
EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mathematics and Computing Science

MASTER’S THESIS

Cryptography as a service
in a cloud computing environment

Hugo a.w. Ideler

Eindhoven, December 2012

Supervisors: Prof. dr. Milan Petković∗

Prof. dr.-ing. Ahmad-Reza Sadeghi†
Instructors: MSc. Sven Bugiel†

MSc. Stefan Nürnberger†

∗Eindhoven University of technology
†Center for Advanced Security Research Darmstadt (cased)

ii

Abstract

Nowadays, a serious concern about cloud computing is the
protection of clients’ data and computations against various
attacks from the cloud provider’s side as well as outsiders.
Moreover, cloud consumers are rather limited in implement-
ing, deploying and controlling their own security solutions
in the cloud.
In this thesis, we present a cloud architecture which en-

ables cloud consumers to securely deploy and run virtual
machines in the cloud, in which the complete deployment
lifecycle is considered, and with a special focus on both the
malicious insider as well as the external attacker. Our imple-
mentation, which is based on the Xen hypervisor, revolves
around three core modifications to the status quo.
First, the clients’ cryptographic operations run in an

isolated client-specific secure execution domain, protected
from cloud administrators and outside attackers having
gained access to a vm’s data. Second, we present a design
that guards the confidentiality and integrity of a user’s vm
as a whole against the cloud administrator. This is achieved
by enforcing stronger access control and by noninvasive
modifications to the Xen architecture. Third, we extend
Xen with a design for secure credentials provisioning by
leveraging standard trusted computing technology, enabling
cloud consumers to always be in control of the access to,
and usage of, their cryptographic credentials in the cloud.

We evaluate our implementation in a lab setup. In addi-
tion, we perform rudimentary experiments in the ec2 public
cloud to the extend possible with the constraints imposed
by the cloud provider.

iii

Acknowledgements

This thesis is the result of my graduation project at the Center for Advanced
Security Research Darmstadt (cased) in cooperation with the Eindhoven
University of Technology.
I wish to thank my supervisor from Darmstadt, prof. Ahmad-Reza Sadeghi,

under whose supervision and guidance I was able to work on a highly interesting
and intriguing topic. Furthermore, I am deeply grateful to my instructors, Sven
Bugiel and Stefan Nürnberger, on whom I could always rely during my months
in Darmstadt to help me out with feedback and fruitful discussions. It was a
great pleasure for me to work with them.

Finally, I expressly thank my Eindhoven supervisor, prof. Milan Petković, for
giving me the opportunity to do my master’s thesis at a different university
and for his continuous support during the whole project.

Hugo a.w. Ideler
Darmstadt, Germany
December 2012

iv

Contents

Abstract iii

Acknowledgements iv

1. Introduction 1

2. Background information 4
2.1. Introduction to virtualization 4

2.1.1. Virtualization technologies 5
2.1.2. Virtualization techniques 6
2.1.3. Memory virtualization 9

2.2. Introduction to the Xen hypervisor 10
2.2.1. Virtual devices . 11
2.2.2. Tools . 14
2.2.3. Xen security . 15

2.3. Introduction to trusted computing 17
2.3.1. Core concepts . 17
2.3.2. Operations . 20

3. Problem description 25
3.1. Attacker model . 25

3.1.1. Attack channels . 25
3.1.2. Assumptions . 27
3.1.3. Adversaries . 28

3.2. Requirements . 29
3.2.1. Security objectives . 29
3.2.2. List of requirements . 30

4. Related work 31
4.1. Virtualizing the tpm . 31
4.2. Property-based tpm virtualization 33
4.3. Disaggregating dom0 . 35
4.4. The Xoar design . 37

v

Contents

4.5. The nova microhypervisor . 38
4.6. Cloud trust anchors . 41
4.7. The Cloudvisor design . 42
4.8. Self-service cloud computing . 44

5. Architecture 46
5.1. Introduction . 46
5.2. Design . 48

5.2.1. Cryptographic assistance domain 48
5.2.2. Hypervisor access control 49
5.2.3. Trusted domain builder 50

5.3. Key provisioning . 51
5.3.1. The basic scheme . 51
5.3.2. The cloud verifier scheme 55

6. Implementation 59
6.1. Components . 59
6.2. Caas bootstrapping . 61

6.2.1. Initialization . 61
6.2.2. Starting a vm . 65

7. Evaluations 69
7.1. Magnitude of the tcb . 69
7.2. Access control . 71
7.3. Passthrough encryption . 72

7.3.1. Discussion of results . 73
7.3.2. Measurement conclusions 74

7.4. Experiments in the public cloud 78

8. Future work 80

9. Conclusions 82

A. Further introduction to Xen 84
A.1. Xen components . 84
A.2. Mini-os . 87

B. Implementation details 89
B.1. Overview . 89
B.2. Data structures . 92

vi

Contents

B.3. Deprivileged management domain 94
B.3.1. The xsm framework . 96
B.3.2. The caas security module 96

B.4. Virtual filesystem driver . 99
B.4.1. The caas vfs bridge . 99

B.5. Domain builder port . 101
B.5.1. The caas domain builder 102
B.5.2. Inter-vm pipe . 104

B.6. Direct booting of domt in conjunction with dom0 105
B.6.1. Tboot . 105
B.6.2. Direct booting of domt 106

B.7. Trusted platform module driver 108
B.8. Passthrough encryption . 108

B.8.1. Cryptography . 110
B.8.2. Domc back-end driver 112
B.8.3. Applying passthrough encryption 112

B.9. vtpms and pv-tgrub . 114
B.10.Services . 115

B.10.1.User vm deployment tool 115

C. Details on the use of TBoot 117

D. Xenstore device handshaking 120

E. Xenstore security 122

F. Xen hypercalls 123

G. XSM hooks 133

Bibliography 135

Acronyms 143

Index of symbols and identifiers 146

Index of concepts 151

vii

List of Figures

2.1. Schematic virtualization overview with hypervisor categories . . 5
2.2. Protection rings in native and paravirtualized environments . . 8
2.3. The three layers of memory virtualization 9
2.4. A typical Xen setup . 12
2.5. Schematic tpm overview . 17
2.6. Chain of trust in an authenticated boot 18

3.1. Attack channels . 26

4.1. Virtualized tpm architecture 32
4.2. Virtualized property-based tpm 34
4.3. Domain builder overview . 36
4.4. Overview of various trusted computing bases 38
4.5. Nova architecture . 39
4.6. The cloud verifier design . 41

5.1. Example of segregating and isolating keys 47
5.2. The chicken-and-egg problem with key deployment 47
5.3. High-level overview of the caas architecture 49
5.4. Tpm interactions in plain scenario 52
5.5. Trusted deployment of vm to the cloud 56

6.1. Overview of the components to be discussed in this chapter . . 60
6.2. Bootstrapping the hypervisor securely 62
6.3. The hypervisor boots the two primary work domains 63
6.4. Initialization of the two primary work domains 64
6.5. Starting a vm . 65
6.6. The building of a vm . 66
6.7. The caas design in operation 68

7.2. A comparison of the distribution of Xen hypercalls with and
without access control . 71

7.3. Plot of relative overhead of running in passthrough mode . . . 75

viii

List of Figures

7.4. Close-up inspection scatter plot 76
7.5. Plot of relative overhead of running with encryption 77
7.6. Example domc output on ec2 79

A.1. Overview focused on the user space Xen libraries living in dom0 85
A.2. Flowchart of booting using pv-grub 86

B.1. An overview of the original management libraries together with
the caas additions . 90

B.2. Mini-os components . 91
B.3. Encrypted vm data structures 92
B.4. The vmcb and csinfo data structures 93
B.5. The interactions between the entities for deploying a vm 95
B.6. Vfs daemon demonstration . 101
B.7. The break-up of libxl over an unprivileged dom0 and privileged

domt part during the domain builder process 102
B.8. Schematic overview of the xlcore communication channel 104
B.9. Essiv disk encryption . 111
B.10.Overview of the initialization of the domc devices 113
B.11.Structure of block interface requests 114

D.1. Xenstore handshaking for device establishment 121

ix

List of Tables

2.1. Grant table example . 12

3.1. Summary of attacker model . 29
3.2. Summary of security objectives 30

7.1. Properties of the benchmark machine 72

B.1. Overview of system calls implemented by the vfs bridge 100
B.2. Key properties for the certified binding key 107

F.1. Overview of Xen hypercalls . 124
F.2. Locations where hypercalls are processed 132

G.1. Xsm hooks that were not used 133
G.2. Xsm hooks that were used . 134

x

1. Introduction

Trustworthy cloud computing — fact or fiction? This is a question that is not
easy to answer, though it is certain that this topic has attracted significant
momentum and attention in both academia and industry [VZ09]. For some, cloud
computing heralds the fulfillment of the long-held dream of “computing as a
utility,” while for others cloud computing is nothing more than a rehash of
established ideas [Arm+10].

Defining cloud computing is not simple. This is due, in part, to the variety of
different technologies involved, as well as the hype surrounding the topic [Vaq+08].
Nevertheless, the oft-cited definition as put forward by the nist [MG11] strikes a
good balance. It defines cloud computing as, “a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal management effort or service
provider interaction.”
However, in spite of the many potential blessings of cloud computing, this

new paradigm is also associated with additional risks which cloud consumers,
people or organizations leasing cloud resources, need to be aware of [CSA10].
First of all, the cloud service provider (csp), who offers and controls the cloud
resources, has full access to any data or computations brought into the cloud.
Second, because csps multiplex their limited resources to multiple consumers
for efficiency reasons, there is the threat of other cloud consumers, with whom
cloud resources are shared, breaking the isolations imposed by the csp. Third,
while moving to the cloud adds attack channels, the ‘old’ channels, misused
by external attackers, still exist. In fact, as a recent report by Alert Logic
shows [AL12], most of the security incidents in cloud-hosted software still occur
through old attack vectors, e.g. web services exposed to the Internet.

While protection against external attackers is essentially a business of cloud
consumers and hard to address at infrastructure level, the csp can play a role
in offering security services for enabling security in depth. In non-cloud settings,
security in depth has been comprehensively explored — for instance, hardware
security modules (hsms), physical devices that use and manage cryptographic
credentials, are an established methodology to protect high value keys. By
requiring an out-of-band channel for the extraction of keys, the high value keys

1

1. Introduction

remain protected in spite of a breach of a connected computer system. While
cloud consumers are typically not allowed to bring their own hsms to the data
center, the csps can alleviate this constraint by starting to provide virtual hsms
in the cloud.

The conclusion that cloud consumers, by the very nature of cloud computing,
will need to invest a degree of trust in the csp seems inevitable. The challenge
for cloud computing is, therefore, to reduce this degree of trust to acceptable
levels. One promising direction that has been proposed, is by leveraging trusted
computing technologies [SGR09]. The benefit for cloud consumers of using trusted
computing is that it allows them to determine whether the csp is indeed running
the trusted software that it claims. Unfortunately, while the trusted computing
underpinnings are well known, actual implementations which make use of these
principles are scarce.

The goal of this thesis is to design and implement a cloud security architecture
which enables cloud consumers to securely deploy and run their virtual machines
in the cloud, protecting their high-value cryptographic credentials against
external as well as internal attackers. Special consideration is given to providing
this protection during the entire lifecycle of virtual machines, i.e., from booting
up encrypted images, to securely isolating the virtual machine at runtime.
To realize our architecture, we employ well-established trusted computing

techniques and the concept of privilege separation. Our prototypical imple-
mentation and evaluation is based on the popular Xen hypervisor, commonly
applied by today’s largest cloud service providers such as Amazon or Rackspace.

2

1. Introduction

Thesis outline

In chapter 2, we give an introduction to the technologies which underly today’s
cloud computing, and we introduce technologies which play a fundamental role
in our proposed design. Once the background information is explained, we are
able to discuss the problem description in chapter 3 in sufficient technical detail.
We cover the related work to this thesis in chapter 4 in which we discuss the
state of the art in this field.

We present our architecture in chapter 5, where we unfold our cryptography as
a service (caas) design. A technical discussion of our implementation follows in
chapter 6. After an evaluation in chapter 7, we discuss future work in chapter 8
and draw conclusions in chapter 9.

Typesetting and layout

Notational formatting

The following typographical convention will be applied.

• Acronyms are typeset in smallcaps (e.g., tpm).

• Functions are typeset in sans-serif and namespaces are prepended in
brackets (e.g., 〈abc_〉Example).

• Literals are typeset in teletype font (e.g., /etc).

Figure formatting

The figures presented in this thesis share a common layout. In the main text,
we refer to components shown in the figure using labeled references. In addition,
when a distinction between trusted and untrusted components is relevant, we
highlight trusted parts in red with italic font, while untrusted parts are shown
in blue with normal font.

Example.

A B1
2

1 A trusted component.
2 Communication initiated from a trusted to an untrusted component.

3

2. Background information

In this chapter, we provide an introduction to selected topics which are necessary
for understanding the solutions proposed in this thesis. The topics we will
discuss are virtualization in general, virtualization using the Xen hypervisor in
specific, and the trusted computing technology. Readers who are sufficiently
familiar with these topics can safely skip one or more sections.

2.1. Introduction to virtualization

Virtualization is an ubiquitous architectural pattern in the field of computer
science. It is found in many components of modern computers at both software
and hardware levels. The virtualization pattern is related to the concepts of
abstraction and emulation in that a higher level layer imposes obligations on a
lower level layer, regardless of how it is implemented.
A typical example is memory virtualization in which the illusion of nearly

unlimited, contiguous memory is presented to a program running on an operating
system. By removing the burden of complex memory management from the
application, the software becomes less error prone and also enables the operating
system to use the limited ram resources more efficiently.

Other examples that are commonplace are virtualization of i/o devices (e.g.,
mounting an image of a cd-rom without actually writing it to a cd) and
virtualization of entire platforms. Already long before the advent of present day
cloud computing, virtualization of platforms has been used in large mainframes
in the 1950s. Only in the last decade has large-scale virtualization taken flight,
forming a cornerstone of the concept of cloud computing.
In literature, authors generally discern between three levels of cloud com-

puting, namely software as a service (saas), platform as a service (paas), and
infrastructure as a service (iaas). These three degrees deal with cloud comput-
ing at different abstraction levels, and each degree has its own particular use
cases. However, only the lowest level of these, iaas, deals with virtualization
directly. Considering that this thesis focuses on infrastructure solutions, we will
not discuss paas or saas any further, though we note that these concepts can
be utilized on top of the iaas foundations provided in this thesis.

4

2. Background information

Hypervisor

Hardware

Management
vm

Virtual
machine

(a) Type-i hypervisor: the hypervisor is
truly a distinct entity and is the highest
privileged code running on the machine.

Hosting os

Hardware

Hypervisor Other programs

Virtual
machine

(b) Type-ii hypervisor: the hypervisor
is an application running inside an os
and is not isolated.

Figure 2.1: Schematic virtualization overview. In both types a hypervisor
provides for the virtualization operations, but how the hypervisor itself is
positioned differs.

2.1.1. Virtualization technologies

A hypervisor1 is a software layer that multiplexes hardware resources among
one or more guest operating systems, in analogy to how a supervisor multiplexes
resources among applications inside an operating system (os).
Although there exist a variety of different virtualization technologies, usu-

ally a distinction is made between type-i and type-ii hypervisors (Fig. 2.1).
This distinction between hypervisor categories goes back to Goldberg, who
already discussed this subject in times long before the present day virtualization
techniques [Gol73].

1. The type-i hypervisors are also called bare-metal hypervisors, since they
run directly on the hardware without an intervening layer of an os.
Examples of this category are Xen, Hyper-v, and Vmware esx [Bar+03;
VV09; VM]. Some of the type-i designs, most notably Xen, make use of
a “management vm” to perform tasks such as device emulation inside a
special vm instead of doing these in the hypervisor. An oft-cited argument

1The term virtual machine monitor (vmm) can be used interchangeably with hypervisor.
For consistency, we will use the term hypervisor throughout this thesis.

5

2. Background information

in favor of type-i hypervisors, is that a small, dedicated hypervisor benefits
isolation between vms, improving security.

2. The type-ii hypervisors are a somewhat broader category because the
more flexible architecture allows for a wider variety of virtualization solu-
tions. This category includes virtualization software such as Virtualbox,
kvm, or Vmware Player [VB; Kiv+07; VM] which run inside the host os as
an application. Therefore, a type-ii hypervisor is also referred to as a
hosted hypervisor.
One the one hand, this means that type-ii virtualization software can
optionally benefit from a convenient integration with other applications
running in the host. On the other hand, the hypervisor is not isolated
but is exposed to a large environment, making it more difficult to reason
about the security of the hypervisor.

Nevertheless, we remark that the type distinction between hypervisors is
only an indicator and that the reader must be careful in making too strong
generalizations. For example, while type-ii hypervisors usually have some
performance overhead by not running on the hardware directly, this is not
always the case. Consider for instance the type-ii kvm hypervisor which runs as
a Linux kernel module. By being part of the kernel, kvm has complete access
to the hardware and can achieve performance in the range of contemporary
type-i hypervisors [Des+08].

2.1.2. Virtualization techniques

The success of the ibm pc during the last decades means that its cpu instruction
set, i.e., the ia-32 (or x86) instruction set, is by far the most commonly used
architecture in the desktop and server environments. Due to the importance
that the ia-32 chipset makers placed on backwards compatibility, the instruction
set has evolved over time to include many redundant features. Moreover, the
instruction set was never designed with virtualization in mind.
Hence, without special cpu instructions, the ubiquitous x86 processor archi-

tecture cannot be easily virtualized. Popek and Goldberg identified in 1974 that
an architecture is virtualizable if the set of sensitive instructions, e.g. those
that change the configuration of resources on the system, is a subset of the
set of privileged instructions, e.g., those that require the processor to run in
kernel mode and will trap (i.e., switch to kernel mode and jump to an exception
handler) if this is not the case [PG74]. This means that if an instruction set is
virtualizable according to this definition, virtualization is essentially completed

6

2. Background information

with handling (by emulation) all traps in the hypervisor and jumping back to
the originating code. However, the x86 architecture contains 17 instructions
which do not possess this property [Chi07]. These instructions do not trap to
a higher privilege level but instead silently fail, making it impossible for the
hypervisor to catch this exception. Hence, these instructions break the virtual-
ization. Three methods have been developed to circumvent these problems on
the x86 architecture.

Dynamic rewriting. The solution that requires the least changes to the guest
os (i.e., the os being virtualized) and can be achieved on both modern and
legacy hardware, is dynamic (binary) rewriting. In the dynamic rewriting
approach, the virtualization environment scans the stream of cpu instructions
and identifies privileged instructions which are then rewritten to emulated
versions [Chi07]. The performance of dynamic rewriting has never been truly
satisfactory, however.

Hardware assisted virtualization. Another approach which requires no changes
to the underlying os but achieves better performance, is using cpu virtualization
extensions. These extensions are privileged cpu instructions added by Intel and
amd as a response to the slow performance of binary rewriting. These virtual-
ization instruction sets — respectively vt-x and amd-v — are sophisticated
extensions to the standard ia-32 instruction set. These instructions add the
ability to “enter a vm” with its own set of cpu registers. For instance, this
makes it much easier to set a distinct cr3 pointer2 for a guest vm so that the
guest has its own page tables distinct from the host, without the requirement
to interpose each cr3 update made by the guest. All sensitive instructions can
trap out of the vm mode, allowing the host to safely handle the instruction
before reentering the guest, who remains unaware to what happened behind the
scenes. All modern hypervisors support the hardware assisted virtualization
mode which can achieve near-native performance.

Paravirtualization. The other virtualization approach which achieves near-
native performance, is the paravirtualized (pv) approach. This mode was
developed as an answer to the poor performance of binary rewriting when
hardware virtualization extensions did not exist yet. Nonetheless, this mode has
not yet lost its relevance, owing to the wide deployment and hardware features

2The cr3 register contains a memory address pointing to the location in ram where the
page tables reside.

7

2. Background information

Ring 0

Ring 1

Ring 2

Ring 3

Kernel

Application

Hypervisor

Kernel

Application

Native Paravirtualized

Hypercall
System call
Accelerated
system call

Figure 2.2: Overview of protection rings in native and paravirtualized envi-
ronments (on ia-32). Adapted from Chisnall [Chi07].

independence. Before we continue, we first give a brief introduction to privilege
rings in the x86 architecture.
On the x86 architecture, there are four protection rings available. Typical

operating systems such as Linux and Windows utilize only two of these rings,
referring to these as kernel mode and user mode. As seen in the left side of
Fig. 2.2, this leaves two rings unused.
On the other hand, in a paravirtualized setting the kernel is lowered in

privilege to ring 1, with a hypervisor taking its old place.3 This means that the
kernel has to be modified in order to relay certain tasks to the hypervisor. In
other words, the kernel needs to be “pv-aware” to function in a paravirtualized
environment, otherwise it will crash (since, as noted, not all instructions can
be virtualized). Furthermore, there are considerable performance gains to be
made if the vm kernel is pv-aware, for instance, by packing multiple page table
updates into one request.
However, since now the hypervisor sits at the place of the kernel, all user

space code that executes system calls (which works via raising an interrupt)
3The situation is more complicated on the x86-64 architecture due to removal of rings.

Even though the general principles stay the same, additional workarounds are necessary which
will not be discussed here.

8

2. Background information

Virtual space

Physical space

Machine space

memory pages

Figure 2.3: With os virtualization, memory access goes through three layers
of indirection. An application perceives the memory as the virtual address
space, the os perceives the memory as the physical space and the hypervisor
sees the memory as the real machine space. Based on Chisnall [Chi07].

end up at the hypervisor and not the kernel. As depicted in Fig. 2.2, this means
that the hypervisor has to forward these requests to the kernel. This extra
ring switch is costly, therefore, accelerated system calls have been introduced
which let the guest kernel install handlers for these via a hypercall, after which
they operate at practically the same speed as ordinary system calls because the
hypervisor registers them as exception handlers to the hardware.

2.1.3. Memory virtualization

In Fig. 2.3, we give an abstract view of how virtualization affects the memory.4
This figure shows how seemingly contiguous virtual and physical pages can be
randomly backed at lower levels. At the top layer, it is shown how the memory
might appear to a running program. Beneath this layer, the os backs this
memory arbitrarily using pages from its memory pool, in order to multiplex
the limited memory among different applications. Note that which virtual
memory pages are backed, and by which physical page precisely, is up to the
os to decide. The hypervisor does the same steps at a level lower, in order to
multiplex memory among multiple vms.
The translation of memory addresses between layers in Fig. 2.3 is done

4While the terminology used in this figure is the Xen nomenclature, the principles are the
same for all hypervisors.

9

2. Background information

in hardware for efficiency reasons.5 However, while Fig. 2.3 is conceptually
a good model to work with, the hardware support exists only for only one
address translation. The fact that the hardware provides only one layer of
abstraction, while virtualization needs two layers, has long been the Achilles’
heel of virtualization on x86. The least intrusive solution is to use shadow
paging, in which the hypervisor keeps a shadow table for use by the hardware
address translation.

A more efficient approach — which requires paravirtualization and has helped
spur the growth of paravirtualization — is the approach where a pv-aware guest
os asks the hypervisor to update the page tables on behalf of the guest os. In
both these approaches the result is that the hardware address translation is
aware of only two of the three memory layers.

The most recent solution, as introduced by the aforementioned Intel and amd
hardware assisted virtualization modes, is the hardware assisted paging support.
Using these new hardware extensions, it is now possible to efficiently have
three levels of indirection without modifying the guest os, greatly simplifying
the virtualization effort. Nonetheless, the paravirtualized mode remains highly
popular due to its extensive deployment at popular cloud providers and hardware
support independence.

2.2. Introduction to the Xen hypervisor

Xen, first released in 2003 by a Cambridge research group [Bar+03], is the
archetypal type-i paravirtualized6 hypervisor and used extensively in public
cloud deployments. Designed as a paravirtualized solution in the time when no
hardware virtualization extensions existed, it could initially only run modified
Linux guests. Nowadays, by making use of the qemu processor emulator [Bel05],
Xen can also run Microsoft Windows and unmodified Linux (or bsd) guests
using either binary rewriting or a hardware assisted mode.

The Xen hypervisor has been developed with the philosophy that the hyper-
visor should be a thin and minimal layer. Due to this design decision, certain
virtualization work is necessarily delegated to a level above the hypervisor.
Therefore, one specific vm is imbued with higher privileges than a regular vm
(cf. Fig. 2.1a) and is assigned to performing device emulation for the other vms.
This management vm is called the domain zero (dom0) in Xen, where in Xen

5The hardware component that takes care of this is called the memory management unit
(mmu) and it works closely together with the translation lookaside buffer (tlb), which caches
results, to provide these translations.

6Although it also supports running in hardware assisted mode called hardware virtual
machine (hvm) in Xen.

10

2. Background information

terminology vms are called domains. In this thesis, we will often use the term
domain when talking about vms at a Xen architectural level; nevertheless, the
terms vm and domain are interchangeable. Regular vms are called unprivileged
domains in Xen and referred to as domus.

The dom0 is not meant as an ordinary vm in which to run workloads. On the
contrary, the use of dom0 must be restricted, since a compromise of dom0 can
affect all vms on the machine. The first responsibility of dom0 is to communicate
with devices such as disks and network interface cards (nics) and offer simple
virtual devices to the other vms (see Fig. 2.4). The second responsibility of
dom0 is to perform the complex operation of building domains, because in a
thin hypervisor design such as Xen, this is not done by the hypervisor. The
third responsibility of dom0 is to provide a platform via which it is possible to
give commands to the hypervisor, e.g., commands for starting or stopping a
vms.

In advanced deployment scenarios, dom0 is an anchor via which the server
can be made part of a larger cloud infrastructure. By leveraging additional
cloud software in dom0, launching a vm can then be achieved from a central
location without directly logging into the dom0.

2.2.1. Virtual devices

Domains in Xen cannot be allowed to talk to the hardware directly. In the first
place this is a practical consideration. Since hardware and firmware tend to
be stateful, interfacing them asynchronously by different domains will lead to
undefined and unexpected behavior. Secondly, the interactions of one domain
with these devices could affect other domains — violating the virtualization
principle of isolation.

Therefore, Xen multiplexes hardware devices in dom0, as exhibited in Fig. 2.4.
In Xen, the domu kernel is pv-aware and talks to dom0 instead of directly to
the hardware. Applications in domu do not notice a difference since their kernel
abstracts from this. In dom0, the kernel reroutes input and output requests by
the guest domains to its disks abstractions or filesystem abstractions, depending
on the configuration by the cloud administrator. For instance, a domu disk
could be contained in a file container on a disk accessible by dom0, either locally
or network mounted.

Grant tables. The actual communication between dom0 and domus takes
place without intervention of the hypervisor. This is achieved by the use of
shared memory which is implemented in Xen via so-called grant tables. Using
grant tables, domains have discretionary access control over the memory pages

11

2. Background information

Dom0 Domu

Hypervisor Memory mgt. Scheduler

Hardware Disk Net Graphics card . . .

Net back

Disk back
user space
Disk driver

Hardware
drivers

user space
Xenstore

Net front

Disk front

Xenstore
driver

user space
Programs

Figure 2.4: A typical Xen pv setup. Although details have been omitted, it
can be seen how domu relies on dom0 for its i/o. Furthermore, in dom0
not all logic needs to be implemented in kernel drivers. For instance, the
Xenstore lives in user space and certain disk back-ends can live in user space,
too.

grant ref mfn dom id flags
...

1375 42348 12 permit
1376 42347 12 permit | readonly
...

Table 2.1: An example of Alice’s grant table with fabricated values. In this
example, Bob’s domain id is the value 12. Additionally, one page is shared
read-only.

12

2. Background information

they possess. A domain can share a regular memory page with another domain
by adding an entry to its grant table indicating which memory page to share
with whom.7

For example, domain Alice decides to share some of her ram with domain
Bob. Because she knows the domain identifier of Bob, she can put an entry in
her grant table for a memory page she wishes to share. In case Alice wishes to
share multiple memory pages with Bob, she will have to add multiple rows in the
table, one for each machine frame number (mfn).8 An example of Alice’s grant
table is shown in Table 2.1. After this, Alice tells Bob which grant references
he should use when mapping the shared memory.

On the other side, Bob makes a hypercall to Xen, giving the domain identifier
of Alice and the offset in her grant table indicated by the grant reference number.
Xen then looks in Alice’s grant table at the offset determined by the grant
reference and checks if Alice has indeed listed Bob as the domain she wants
to share the memory with. Xen does some sanity checking, such as checking
whether Alice actually owns the memory page she wants to share and checks
the flags. After these checks have been passed, both Alice and Bob can write
simultaneously to the same piece of physical memory. With Alice and Bob
writing to the same part of memory, this will require synchronization techniques,
especially on symmetric multiprocessor architectures (smp) architectures. The
Xen solution to this problem is to use ring buffers. These are standard solutions
in memory in which both sides can read and write simultaneously. The buffer
is augmented with a set of running counters, accessible by both, that ensure
that no data is corrupted as long as both parties behave as agreed.
One helpful feature Xen offers for inter-vm communication over shared

memory are event channels. By using these event channels, domains can notify
each other when there is data waiting to be read in a shared memory page.
Setting up an event channel between two domains requires an action on both
sides, similar to the use of grant tables. One domain opens an event channel on
a randomly allocated port number, and the other domain connects to this port
after which the channel can be used in both directions to send notifications
(without a payload).

Xenstore. The above scenario made assumptions — it assumed Alice and Bob
know each other’s domain identifier, and that Bob knows the offset in Alice’s

7For completeness, we note that grant tables also supports an operation to permanently
transfer a page to another domain instead of only sharing. Because we do not use this
operation in this thesis, we do not discuss this further.

8The typical page size used on x86 is 4096 bytes, so sharing multiple pages is often a
necessity.

13

2. Background information

grant table (i.e., the grant reference) as well as the event channel port number.
All this information needs to be communicated out-of-band between Alice and
Bob. The solution used in Xen is the Xenstore: a key-value store organized in a
tree (i.e. like a filesystem), accessible by both Alice and Bob via which domains
in Xen can share small pieces of information (most commonly, information
about virtual devices).
The Xenstore is served by dom0 and it communicates with all the other

domains via shared memory communication channels. For each of these domains,
an initial communication channel with the Xenstore is set up when the domain
is being created. Hence, the Xenstore serves, amongst other things, as a
bootstrapping system; only this communication channel needs to be preliminarily
setup, all other communication channels can be built with information derived
from the Xenstore. All the Xen pv drivers, including disk and network, use this
technique of discovery via the Xenstore.

2.2.2. Tools

Besides the components discussed so far, which had a direct relation to device
virtualization, there are more Xen components which play a role in this thesis.

Domain building. Because Xen is a thin hypervisor, the responsibility of
domain building (Xen terminology for vm creation) lies with dom0.9 The
process of domain building is complex, but it can be summarized in the following
description:

i. dom0 parses the to-be-booted kernel and checks any flags inside;
ii. the hypervisor is asked to set up a new memory range for the new domain;
iii. the kernel and ramdisk images for the new vm are placed in this range;
iv. the virtual devices are attached to real devices inside dom0;
v. the hypervisor is requested to schedule the new domain.

Toolstack. Xen comes with a dom0 tool with which the cloud administrator
can interact with the Xen system. This tool, xl, is the “Swiss army knife”
with which the administrator can perform operations varying from starting or
stopping a vm, to setting quotas or migrating away vms. As an example, an
administrator can create a vm with the following command, which will read
the vm settings from the specified configuration file.

9This was not always so: Xen developers moved the domain building functionality out of
the hypervisor and into dom0 between Xen version one and version two [Chi07, p. 16].

14

2. Background information

xl create /etc/xen/guest.cfg

The program logic of the xl tool resides in a separate library for which xl is
merely a front-end. Hence, the vm can be managed by not only the xl tool but
also by api calls to the Libxl library. We defer an in depth discussion of the
toolstack to the implementation chapter, where we discuss our modifications.

Mini-OS. Xen comes with a minimal paravirtualized operating system specifi-
cally made for Xen, called mini-os, which makes many simplifying assumptions
about the environment in order to achieve a very minimal trusted computing
base (tcb). Mini-os is well suited for creating various helper vms with a much
smaller tcb than approaches using a commodity os would be able to achieve.
We make extensive use of the mini-os system in our proposed design.

At a later point in this thesis, during the implementation chapter, we discuss
mini-os in more detail.

2.2.3. Xen security

In Xen, a domain is privileged if it has certain rights which are not normally
granted to regular vms as used by cloud consumers. By default the only
privileged domain is dom0. Dom0 uses these powers via several privileged
hypercalls.10 An example of such a privileged hypercall is the hypercall with
which dom0 maps (at any moment) memory of other domains into its own page
tables, i.e. introspection. This privileged hypercall is used at several places in
dom0 to perform necessary duties, and is by itself a legitimate hypercall.

Introspection is not only powerful because it can read any memory, it is also
the case that a domu cannot detect if it is being introspected. Introspection
can actually enhance a domu’s security, e.g., through allowing the dom0 to
detect attacks and malware living in domus [NBH08; GR03]. However, exactly
this introspection power can be abused by an attacker with access to dom0
because there is no way to discern whether this power is being used for good or
for malign purposes.

We identified three causes why dom0 is privileged and, conversely, why it is
difficult to deprivilege dom0.

1. Domain building. As mentioned earlier, the Xen design advocates a
thin hypervisor. Since, as explained in previous subsection, the domain

10The so-called domain control series of hypercalls. For details, see the hypercall Table F.1
on p. 124.

15

2. Background information

building process is complex it has (in the Xen philosophy) not a place in
the hypervisor itself.
A specific case involves suspension and resumption. In a suspend operation,
the state of a domain — essentially, its memory pages — is flushed to
a file (and vice versa for resumption). During this serialization dom0
reads the target domain’s page tables and rewrites all page references to
machine-independent values. This is a crucial step, and to accomplish it
dom0 needs privileges to access other vms’ memory.

2. Lifecycle management. The dom0 performs administrative duties on
behalf of the csp. Lifecycle management involves launching, pausing,
resuming, and migrating vms. In addition, it also involves querying and
controlling resources such as the scheduler used, processor and memory
usage, or the system clock.

3. Virtual devices. Regular vms cannot be allowed to talk to the real hardware
directly, since this affects all other vms. Therefore, dom0 needs to have a
privileged status to directly talk to the hardware. However, if ignoring
direct memory access (dma) attacks for the moment, this privileged status
is not as powerful as in the first case. Namely, talking to hardware does
not require dom0 to introspect other vms.11 In addition, offering virtual
devices to other vms does not require a privileged status. When using a
virtual device, a domain offers a memory page to dom0 in which their
communication takes place — it is not necessary for dom0 to unilaterally
map such memory.

Finally, another liability for a cloud consumer’s data resides with the vm
image. Since the virtual disks are emulated in dom0 and not in the hypervisor,
this ought to be taken in account in any security design based on Xen. Moreover,
when a vm is not (yet) running, it is stored as a virtual disk in a file container.
Such a file container can reside anywhere in the cloud, which makes it particularly
challenging to assert that it is stored at a trusted location.

11In fact, in the current Xen architecture the permission of communicating with hardware
is indicated using an i/o capability in the hypervisor on a per-domain basis and does not
exclusively require a privileged status.

16

2. Background information

Trusted platform module (tpm)

Cryptographic engine Non-volatile memory Volatile memory

Random number
generator (rng)

Rsa key generator

Sha-1 hash
generator

Rsa operations

Endorsement
key (ek)

Storage root
key (srk)

Certificate by
manufacturer

Storage keys

Attestation iden-
tity keys (aiks)

Platform configura-
tion registers (pcrs)

Figure 2.5: Schematic overview of a tpm. Based on tcg documentation [TCGb].

2.3. Introduction to trusted computing

In this section, a brief introduction to trusted computing is given. Trusted
computing is an important building block for the cryptography as a service (caas)
design proposed in this thesis. This section is organized in two subsections, core
concepts and operations.

2.3.1. Core concepts

Terminology. The concept of “trust” can have many different interpretations.
In this thesis, it is defined as follows.

• A trusted system or component is one whose failure can break the secu-
rity policy, while a trustworthy system or component is one that won’t
fail [And01].

• The trusted computing base (tcb) is defined as the set of components
(hardware, software, human, etc.) whose correct functioning is sufficient
to ensure that the security policy is enforced, or, more vividly, whose
failure could cause a breach of the security policy [And01].

In other words, the tcb of a system is the set of its trusted components.

Background. The Trusted Computing Group (tcg) is an industrial initiative
with the goal of establishing trusted computing (tc) technology. The tcg is
backed by companies such as Intel, amd, ibm and Microsoft [TCG]. The core of

17

2. Background information

Computer hardware

crtm

bios

Boot loader

Operating system

Application X

cpu tpm

C
ha

in
of

tr
us
t

pcr-0

pcr-1

. . .
pcr-23

load
extend
trusted component

Figure 2.6: The chain of trust in an authenticated boot. Through the consistent
use of the extend operation, the trust can be extended from the crtm to
applications running on the os. Adapted from Sadeghi [Sad11].

their trusted computing technology is formed by a hardware security module
soldered to the motherboard: the trusted platform module (tpm). The tpm is
not a cryptographic accelerator (in fact, it is orders of magnitudes slower than
a cpu) but provides, barring physical attacks, a tamper-proof environment for
cryptographic operations. The tcg has published the design of a tpm over
several specifications which describe the commands and data structures a tpm
must adhere to [TCG03].
The tpm provides several security features, discussed in the following para-

graphs. The information in this section is from Sadeghi [Sad11] as well as the
tpm specifications [TCG03].

Cryptographic engine. In Fig. 2.5 a schematic overview of a tpm is shown.
Depicted are the various cryptographic operations and the non-volatile and
volatile memory components.12 The tpm offers several cryptographic operations
(encrypting, decrypting, signing and hashing) to the running os. In particu-
lar, the tpm provides a secure generation, storage and usage of asymmetric

12Note that symmetric key operations are not natively supported. However, the tpm can
be used to store such keys in a secure environment.

18

2. Background information

cryptographic keys. Unless explicitly specified during key creation, the private
key-part of keys created by the tpm can never leave the hardware chip in
unencrypted form.

Root of trust. The tpm enables the measurement of the software configuration
which runs on the machine. Measuring means calculating a hash of a program
binary and storing this hash digest in the tpm. In tpm terminology, a register
which can hold a complete hash is called a platform configuration register (pcr),
and storing a hash in a register is called the extend operation (defined more
precisely below). The tpm comes with 24 pcrs, each of 160-bit length where a
hash can be stored.13

This extend operation and these pcrs are invaluable tools for determining
if a trusted configuration is running. Consider, for instance, if we wish to
know whether program X is trusted (see Fig. 2.6). When communicating and
interacting with this program, we might be led to believe that this program
is trusted (or not), but to be certain, we would need to know the source code
of X — or in the very least, we would need to know the hash digest of what a
trusted version of X looks like.
But to determine what version of X is running, we need to ask this to the

entity who loaded X: the os. The statement that the os will give, however, is
only reliable to the degree that the os itself is trusted. Hence, this chain of trust
trickles all the way down to the very start of booting up the machine: a small
piece of immutable firmware, called the core root of trust for measurements
(crtm).

The example shown in Fig. 2.6 is an instance of the so-called static root of
trust for measurements (srtm), also known as authenticated boot. Each step in
the loading process involves a trusted program loading a new trusted program
and extending the trust in the tpm. It is static in the sense that it not possible
to create a root of trust at any later point — the extension steps must have
been taken from the very beginning of booting the machine.

Authenticity of TPM. The tpm comes embedded with a unique master keypair
of which the private part never leaves the chip: the endorsement key (ek).
During the creation of the tpm chip, the manufacturer embeds the private and
public parts of the ek into the chip. Furthermore, it also embeds a certificate
(signed by the manufacturer) on the public key-part of the ek which vouches
for the authenticity of the chip: the endorsement credential.

13We assume in this thesis exclusively version v1.2 of the tpm specification, which has
more pcrs than the preceding version.

19

2. Background information

In principle, this certificate allows a third party to verify that messages signed
with this ek come from a genuine tpm. Moreover, it allows a third party to
communicate over a trusted channel with the tpm. However, due to privacy
concerns of traceability, usually the ek is not used directly but an intermediary
attestation identity key (aik) is used which gets signed by an externally trusted
certificate authority (ca).14

Since the tpm itself has only very limited non-volatile storage capacity, most
keys are stored outside the tpm, typically on the hard disk. However, this does
not compromise confidentiality or integrity of keys because these are encrypted
using the storage root key (srk) of which the private key-part never leaves the
tpm.

Dynamic root of trust. The tcg recognized that there are scenarios in which
a user might wish to begin a root of trust after booting. Therefore, Intel
and amd took steps to simplify the chain of trust. Both chip manufacturers
introduced cpu instructions which allow the measured environment to be
started at any arbitrary time after booting. Intel brands this technology under
trusted execution technology (txt) while amd brands it as part of amd-v [TXT;
AMDV].15 Such a chain is referred to as a dynamic root of trust for measurements
(drtm) because all the measurements (or rather, the lack thereof) up to invoking
this operation do not play a role.
An instantiation of this technology, which will play a role in our implemen-

tation, is tboot (trusted boot) [TB]. This technology is a trusted bootloader
written by Intel which makes use of the tpm and relies on the txt processor
instructions found on most Intel chipsets. By using tboot, one can boot a
trusted configuration without worrying about the measurements related to
previous components, such as the bios.

2.3.2. Operations

We briefly discuss the tpm operations that play a role in this thesis. The reader
may choose to skim this subsection initially, and refer back to it when tpm
operations are referenced.

Extend operation. Storing hashes in a pcr is achieved in chained fashion:
instead of storing all hashes in a linked list, a new hash simply hashes an old

14Strictly speaking, this approach has now been replaced with direct anonymous attestation
(daa), which removes the dependency on a trusted third party (ttp) using a zero-knowledge
protocol. The underlying idea remains the same, so we will not discuss daa here.

15Formerly known as respectively Intel LaGrande and amd-svm.

20

2. Background information

hash as part of its input. This makes effective use of the limited memory in a
tpm, and does not compromise security in any way.

The tpm stores these measurements in volatile memory which is cleared at
boot time. To place a measurement via extending, the os sends to the tpm:

command: 〈TPM_〉Extend(i, m)
result: pcr i ←−SHA1(pcr i, m)

Clearly, the value in a pcr i depends not only on the last but on all values
that have been extended to that position and their ordering. When considering
the chain of measurements in a specific pcr slot, then the trust in a certain
hash after j extend operations, i.e. hj , depends on the trust of the preceding
extend operation hj−1. The first hash in this chain, h0, is extended by the
crtm. Because the tpm specification does not cover advanced physical attacks,
this hardware measurement is axiomatically assumed to be trusted.

Attestation. An important aspect of having a measured environment, is to
prove to third parties that a trusted configuration is running. This step, called
attestation in tc terminology, utilizes the tpm to generate an authentic report
for the appraiser party — who has to judge whether he or she trusts the tpm,
and whether the stated pcrs correspond to a trusted configuration.
Attestation is achieved through the 〈TPM_〉Quote command. This command

takes a nonce from the appraiser (in order to ensure freshness), and outputs a
signed structure which contains the nonce and a list of pcrs. Typically, an aik
will be used for this purpose, with a trusted ca certifying that this aik comes
from a valid tpm.

Key creation and usage. The tpm can create several kinds of keys, including
migratable and non-migratable. Migratable keys are keys which can be exported
to another tpm (by encrypting it for that tpm’s public key), while for non-
migratable keys, the private key-part is strictly bound to this platform.
Keys are created using the 〈TPM_〉CreateWrapKey command. The command

creates a new key and wraps it inside a parent key (hence the name), which
must be loaded at that moment. In this way, the tpm stores its keys in a tree.
As mentioned earlier, most keys are not loaded into the tpm initially.

Hence, before using an operation with keys, they first need to be loaded
using 〈TPM_〉LoadKey2.

Binding. Binding keys are keys whose private key-part lives in the tpm, and
for which the decryption, using 〈TPM_〉Unbind, is performed inside the tpm. For

21

2. Background information

migratable keys, this is nothing else than normal asymmetric encryption. For
non-migratable keys, however, a useful scenario exists, which is to bind the key
to the current platform.

This act of binding to the platform can furthermore restrict the use of the key
exclusively to a trusted configuration. The tpm can also generate a certificate
over this key which can be used as a proof for third parties, confirming that
whatever they encrypt using this public key can only be decrypted if the system
is in a trusted state. This kind of non-migratable binding key we also refer to
as a certified binding key.

Sealing. Binding to a trusted state is a very useful tpm feature and can also
be achieved using non-migratable storage keys, where it is known as sealing.
The command 〈TPM_〉Seal takes a blob of data, the handle of a non-migratable
storage key loaded in the tpm, and a list of pcrs to restrict to.16 It will then
encrypt this blob and return this to the caller; i.e., the encrypted blob is stored
on external storage, but only the tpm will ever be able to decrypt it — which
it will only do if the configuration is in the state specified during sealing.
An example use of this function is a trusted os which saves its state to disk

before rebooting. By sealing it first, it can ensure that in case the machine is
booted into a rogue os, the tpm will not disclose the data.

Localities. The tpm is a memory-mapped i/o device, meaning that one can
talk to the tpm by merely addressing a fixed memory address. Furthermore, the
tpm has the concept of localities, which are essentially privilege levels. These
localities can be used in binding to the platform (i.e., restrict the use of a key
to a certain locality) but also have effects on which pcrs can be used by which
locality.
The tpm has a very simple way of discerning localities: communication

with the tpm can take place at different memory addresses, and each different
memory address corresponds to a different locality. The implicit assumption is
that the first os to boot has the highest locality possible, therefore, only this
entity decides to which tpm locality any subsequently spawned programs are
allowed to write.

16Due to the nature of the tpm as a secure but slow module, it makes sense to only use
these operations to seal and unseal symmetric keys. These keys can then be used by the
caller to encrypt/decrypt a larger data blob in a faster manner. This is also known as hybrid
encryption.

22

2. Background information

Monotonic counters. The tpm comes with four independent monotonic coun-
ters. A monotonic counter is an integer which supports only two opera-
tions, a 〈TPM_〉ReadCounter command, which returns the current value, and a
〈TPM_〉IncrementCounter.

A trusted monotonic counter is a highly useful tool for situations where replay
attacks need to be prevented. For example, if a trusted os stores a virtual
wallet to disk, it may decide to sign the data before writing it away.17 Then,
when the data is read back in a later phase, the signature on the data may
convince the trusted os that the data has not been tampered with. However,
while this might hold true, it gives no guarantee that an adversary did not
overwrite the data with an older copy.

The solution for this problem is to let the trusted os (i) increase the value of
the monotonic counter (invalidating all previous copies possibly stored on disk)
and (ii) placing the new value of the monotonic counter in the blob to sign
and write to disk. The next time the trusted os reads the data from disk, it
will reject the data if the value of the counter does not equal the saved counter
value in the data blob.

While the tpm is a fine device for storing such a trusted monotonic counter, it
comes with a limitation, namely, only one counter can be used at a time; a reboot
is needed to switch between one of the four counters. While this might appear
as a limitation, in fact, a single trusted monotonic counter suffices [Sar+06]. A
trusted os can offer an unlimited set of virtual counters to programs while
relying on the tpm trusted monotonic counter for protection against replay
attacks on its own virtual counters when these are stored to disk.
Sarmenta et al. identified that a monotonic counter should satisfy three

requirements [Sar+06]:

1. The value must be non-volatile (i.e., must not be lost and must only
change when explicitly incremented).

2. The value must be irreversible (i.e., no decrease is permitted).

3. The commands must be atomic (i.e., the behavior of two parallel read
and increment operations must be defined).

Monotonic counters will play a role in our design to protect against rollbacks of
state data by an adversary.

17Or alternatively, using encryption or with an hash-based message authentication code
(hmac).

23

2. Background information

Ownership. The tpm supports the concept of ownership of the tpm. Before a
tpm can be used, it first must be taken ownership of. This ownership operation
installs a new srk in the tpm by overriding any old one, effectively invalidating
any keys belonging to the previous owner.
All the keys that the tpm creates can be protected by the so-called authen-

tication data, which basically is a password. Such a protection measure can
be useful if the system is used by multiple persons besides the platform owner.
Clearing the platform owner is typically done from the bios and will erase all
the keys from the tpm. For this clearing operation, no additional password is
needed; the fact that the user can enter the bios is sufficient proof for the tpm
that this user is the (new) platform owner.

24

3. Problem description

As stated during the introduction chapter, the goal of this thesis involves
enabling cloud consumers to securely deploy and run their virtual machines
in the cloud and to protect their high-value cryptographic credentials against
external as well as internal attackers. In this chapter, this problem is defined
more precisely and security goals for our architecture are derived. First, we
discuss the attack channels, our adversary model, and assumptions that we
make. Second, we specify the exact requirements as set out in this thesis.

3.1. Attacker model

For analyzing our attacker model we look at the channels through which a vm
can be threatened, and we discuss which adversaries use these channels.

3.1.1. Attack channels

Figure 3.1 exhibits the following channels which can be used to attack a vm.1

C1. The hypervisor has wide ranging capabilities to disrupt and subvert a vm.
In a type-ii hypervisor, this inherently also includes programs running in
the hosting os.

C2. The isolation between vms is fallible and therefore a channel.

C3. Each virtual machine is typically connected to the network just as an
ordinary physical machine would be.

C4. The management vm can start or stop vms and perform other maintenance.
In some hypervisor designs, e.g. vanilla Xen, this channel has access to
the memory of the vm.2

1Observe that channels C4 and C5 are exclusive to type-i; in type-ii these cannot be
discerned from channel channel C1. We remark that although the Xen hypervisor has both
these type-i channels, this might not be the case for all type-i designs.

2We are primarily referring to accessing other vm’s memory via hypercalls. However, we
also consider dma as part of this channel.

25

3. Problem description

Hypervisor

Hardware

Management
vm

Virtual
machine other vms

External parties

1

2

3

4

5

(a) Channels for the type-i hypervisor design.

Hypervisor

Hosting os

Hardware

Virtual
machine other vms

External parties

1

2

3

4 5

(b) Channels for the type-ii hypervisor design.

Figure 3.1: Overview of the channels through which attacks on a virtual
machine can take place. The harddisk symbol is an abstraction for all virtual
devices, including network traffic. Observe that channels which were shown
distinct in type-i, are mangled into a single channel in type-ii.

26

3. Problem description

C5. The management vm can access the virtual devices belonging to a vm (i.e.,
the virtual i/o). This channel is a subset of channel C4, since when the
security of the vm memory is broken, the virtual devices can be considered
compromised as well. However, we will see cases where this distinction is
relevant.

3.1.2. Assumptions

We have made assumptions regarding the channels. These are now briefly
described here.

1. No physical channel. One kind of channel that we did not list, is the
physical attack channel. There is hardly a limit to what a physical attacker
can do against a system. For this thesis, we axiomatically rule out such
attacks and assume that the data centers where the machines are located
provide adequate physical security.

2. Hypervisor assumed trusted. We will ignore the hypervisor (channel C1)
as an attack channel. While there is related work specifically addressing
this problem (e.g., by reducing the hypervisor tcb [SK10; Zha+11a] or by
removing the hypervisor altogether [Kel+10]), we consider it out of scope
for this thesis.

3. Hypervisor designs of type-ii are not considered. In a type-ii hypervisor,
which has no distinct management domain, we cannot consider the cloud
administrator an adversary while on same time assuming the hypervisor
is trusted (see the previous item).
In other words, in a type-ii hypervisor, we would be restricting the cloud
administrator to only channel C3 instead of the much more interesting
channels C4 and C5. Therefore, since countermeasures against the cloud
administrator play a large role in this thesis, we decide to focus exclusively
on the type-i category.

4. No side channels. In this thesis, we ignore the inter-vm attack channel
(channel C2). For example, recent research has achieved interaction
between co-resident vms without abusing any hypervisor vulnerabilities,
but merely by using hardware properties [Ris+09; Zha+11b; Zha+12].

However, though some of these attacks will be discussed in the related
work chapter, we will not attempt to protect against these attacks since
the scope of this thesis does not deal with such advanced low-level attacks.

27

3. Problem description

3.1.3. Adversaries

We consider two adversaries in our attacker model. We discuss these briefly
and explain their relation to the aforementioned interaction channels.

1. Malicious insider. The first adversary is the malicious insider, also known
as the cloud administrator (or operator).3 This adversary has access
through channels C4 and C5, originating from the management vm.4 We
remark that it is not strictly always a csp employee who plays the role of
malicious insider. If the management domain is compromised by a third
party, then for all intents and purposes, this attacking third party plays
the role of malicious insider, even though this party has no affiliation with
the csp at all.
Moreover, the malicious insider has full control over the networking at the
csp.5 Notwithstanding that how the malicious insider intercepts traffic on
the network is an out of scope topic, for Xen, this interception risk is true
in a more simple way. In Xen, all vms will access the network through
the management dom0 (i.e., channel C5), and are therefore exposed even
if the adversary does not intercept on the network itself.

2. External adversary. As second adversary, we consider the external ad-
versary. This adversary finds its way through channel C3, the user’s vm
itself, by exploiting services which are accessible from the Internet.
As a typical example, an external adversary compromises a webserver on
a vm in the cloud. (Which is still very common, as highlighted by the
earlier cited cloud survey [AL12].)

We have not incorporated the co-resident adversary in our attacker model.
While this entity is definitely a factor to consider in cloud computing, it is not
the focus of this thesis. By assuming that channel C2 is not relevant for this
thesis, and likewise for channel C1 (we include attacks on the management
domain by co-residents as part of this channel, ignoring the subtle differences in
attacks), we effectively rendered this adversary without any channels of its own.
Hence, we do not consider the co-resident adversary as part of the attacker
model. A summary of all the adversaries and their attack channels is given in
Table 3.1.

3The malicious insider is identified by the Cloud Security Alliance as top threat number
three to cloud computing security [CSA10].

4See the work by Rocha and Correia for examples of how a cloud administrator can mount
such attacks [RC11].

5More precisely, this network environment can be described in the Dolev-Yao model [DY83].
However, we will not pursue a formal protocol verification in this thesis.

28

3. Problem description

adversary channels
Malicious insider C4, C5
External adversary C3

Table 3.1: Summary of the attacker model, listing adversaries with respect to
attack channels.

3.2. Requirements

First, we determine the security objectives of this thesis. Second, these are
mapped to a list of requirements.

3.2.1. Security objectives

Recall the stated goal of this thesis as the protection of high value keys (hvks)
in the cloud. When considering this goal in the classical confidentiality, integrity
and availability (cia) security attributes,6 the goal can be phrased as the
protection of confidentiality and integrity of hvks in the cloud. However, the
third component of the cia triad, availability, does not appear. Availability
with respect to cloud computing is a wholly different topic, and less a subject
of technological solutions rather than a topic of service level agreements and
trusting the csp that a single adversary is not able to bring down the whole
network. For this thesis, we will consider availability out of scope.

Clearly, the protection of hvks against the malicious insider will involve
technical measures to curtail the power of the cloud administrator. However,
protection measures that segregate the hvks away from a malicious insider could
also benefit the vm as a whole at little additional costs. While the protection
of a vm as a whole has not been precisely defined at the outset of this thesis,
the architecture proposed in this thesis lends itself very well to improving the
whole vm security — if the hvks are guaranteed secure, then these might be
leveraged to extend security to the vm as a whole. Hence, we consider the
confidentiality and integrity of the vm as whole as a requirement, too. (Though
with a weaker attacker model than for the hvks, since, as stated earlier, securing
the vm as a whole against external attackers is not realistically achievable at
the infrastructure level.)

A summary of the core security objectives in this thesis is given in Table 3.2,
where the confidentiality and integrity objectives are listed with respect to

6The cia triad represent the three most ubiquitous security requirements and forms a
useful methodology to analyze the security of systems. (See for example Bishop [Bis04].)

29

3. Problem description

Malicious insider External attacker
Confidentiality vm hvks
Integrity vm hvks

Table 3.2: Summary of security objectives based on the objectives (vertical)
and the adversaries (horizontal). Per field we indicate whether we protect
only the hvks or the complete vm.

adversaries from the attacker model. In addition, there are more security
objectives to consider which are not easily expressed in the cia terminology.
For example, consider protection against rollbacks. In the following subsection,
we map all objectives to a list of requirements.

3.2.2. List of requirements

The following requirements are identified based on the problem description.

R1. Confidentiality and integrity of cloud consumer’s high value keys: these
must remain protected with respect to the attacker model, i.e., the mali-
cious insider and external adversaries.

R2. Confidentiality and integrity of cloud consumer’s virtual machine: these
must remain protected with respect to the attacker model, i.e., the mali-
cious insider.

R3. Strong coupling of cloud consumer’s hvks and vm: a cloud consumer’s
hvks may only be made available to the correct vm.

R4. Freshness: it must be prevented that the malicious insider rolls back to a
previous version of the hvk states which are made available to a vm. (To
prevent, for instance, loading of revoked hvks keys.)

R5. Migration: the cloud consumer’s vm with hvks must be migratable to a
different trusted node.

30

4. Related work

Through the years, a large body of academic literature has been published
related to the security of virtualization and cloud computing. However, no
universal solution for this major topic has been forthcoming yet, although
improvements are being made in several areas. Hopes have been placed in the
area of cryptography, in particular such that decryption keys with the csp is
not necessary.
In the area of cryptography, the recent development which has generated

a lot of attention in the security community is fully homomorphic encryption
(fhe) as put forward by Gentry [Gen09]. Using this technique, it is theoretically
possible to outsource computations to a third party, without actually revealing
the data or computation itself. Hypothetically, this could be the panacea that
allows consumers to utilize the cloud without disclosing their secrets. However,
in its current form this technology is far from maturity. For the foreseeable
future, more practical and efficient approaches are necessary. Moreover, Van
Dijk and Juels proved that fhe can only satisfy a very limited set of use cases,
and cannot provide complete privacy when dealing with applications which take
input from multiple clients [VDJ10].
Therefore, pragmatic solutions, that make less strong assumptions, are still

highly relevant for the foreseeable future. In this chapter we will review several
of the papers which are most related to the work in this thesis, discussing for
each paper the applicability for the requirements from section 3.2.

4.1. Virtualizing the TPM

Berger et al. proposed virtualizing the trusted platform module [Ber+06]. To
achieve this, they proposed the general architecture as seen in Fig. 4.1, in which
the management domain takes care of the tpm emulation by spawning a new
virtual tpm (vtpm) for each new domu. A vtpm is (in principle) a complete
tpm; though it is implemented in software form instead of the traditional form
as a dedicated hardware module.
However, a vtpm suffers from a marked disadvantage: a virtualized tpm

does not possess a manufacturer certificate on its ek like the real tpm does.
Unfortunately, reusing the ek from the tpm is not an option since a tpm never

31

4. Related work

dom0

domu-1 domu-2 domu-n

Hardware tpm

Hypervisor

Server-side
tpm driver

vtpm manager

vtpm instances

Client-side
tpm driver

Applications

Client-side
tpm driver

Applications

Client-side
tpm driver

Applications

Request/response path

Figure 4.1: Standard virtualized tpm architecture. Adapted from Berger et
al. [Ber+06].

discloses the private key part of its ek. One might try forwarding ek related
requests from the vtpm to the hardware tpm, but this will cause inconsistencies.
For example, there are operations in which a tpm creates and signs a certificate
over non-migratable keys that it has created. The tpm will, however, never
certify a key that it has not created itself (such as those created in the vtpm),
nor is there any point in bringing a vtpm key into the tpm — the tpm will not
certify migratable keys, for it cannot make guarantees over keys which have left
the platform.
Therefore, Berger et al. propose three approaches on how to bind the vtpm

to the physical hardware tpm. The three proposed approaches range from
signing the vtpm ek/aik using the physical tpm counterparts, to having a
local authority provide the vtpm aiks. A detailed discussion is out of scope,
though for this thesis it is relevant that each approach comes with a trade-off,
and all approaches require awareness at the challenger side.

Applicability. As seen in Fig. 4.1, the vtpms live in the management node
(dom0 in Xen). Hence, even though the vtpm provides an effective way to
harbor our hvk secrets in a isolated location (req. R1), it only guarantees this
versus the external adversary and not against the cloud administrator. Likewise,
the vm is not protected against the cloud administrator in their design (req. R2).
As long as the vtpms live in dom0, these limitations cannot be alleviated.

Furthermore, the authors claim the vtpm measures domains once they are
started [Ber+06, p. 11]. However, Murray et al. claim that this implementation is

32

4. Related work

not waterproof [MMH08, p. 6]. Supposedly, it risks a time of check, time of use
(toctou) attack by not correctly making the domain builder code vtpm aware.
When looking at the code currently in the Xen source tree, this is indeed seems
to be the case.
Providing vtpm functionality in our architecture is desirable and should be

supported. However, with respect to a cloud-based deployment and potentially
malicious administrators, we have to address the design and implementation
differently.

4.2. Property-based TPM virtualization

Winandy et al. reviewed the vtpm designs published so far, identified weaknesses,
and proposed a property-based vtpm design as improvement [SSW08]. The
concept of a property-based tpm is already older, and a virtualized property-
based tpm is the logical evolution of this well established concept. The original
property-based tpm idea stems from Sadeghi and Stueble [SS04].
The prime weakness that Winandy et al. found, and which their design

addresses, is that pcrs are a too inflexible indicator for whether the system is
in a trusted state or not. For example, if the hypervisor is updated to fix a
vulnerability, then after reboot neither unsealing nor attestation will succeed
anymore if data is bound to the measurements of the old hypervisor code. This
situation can also arise when migrating a vm from one machine to another
machine and if the hypervisor versions do not match.
Their proposal is to add a layer of indirection in front of the actual pcr

values, resulting in the so-called property-based vtpm displayed in Fig. 4.2. This
indirection makes it possible that many different kinds of property providers
can be embedded in the vtpm. For example, the traditional implementation of
the 〈TPM_〉Extend command as we described it in section 2.3 is to cumulatively
hash inputs in each call — this could be one of the property providers.

However, a more interesting property provider is one which, for example, does
not store the plain hashes but rather stores certificates indicating whether the
measured software satisfies Common Criteria1 requirements. The idea behind
this is that such a property provider does not simply store the hash that the
vtpm receives from the vm during an extend operation, but rather that it
queries a ttp about this hash. A ttp then provides a certificate to the property
provider if the hash corresponds to a certain property for which it can give a
certificate.

1The Common Criteria is a well established security engineering standard which can be
used to specify security requirements [CC].

33

4. Related work

Key
management

Property
management

Cryptopgrahic
functions

Migration
controller

vtpm interface
Management
interface

tpm driver

Property provider 1

Property provider 2

Property provider N P
ro
pe

rt
y
fil
te
r

Software key

Hardware key

vtpm policy

tpm key tpm

vtpm

vm

CreateKey() Extend(i, m) crypto. . . Migrate()

〈TPM_〉Extend(i, m) 〈TPM_〉PCRRead(i)

PCRRead(i)

Novel components
for vtpm

Figure 4.2: Virtualized property-based tpm architecture by Winandy et al.
Observe how multiple distinct property providers can be the underlying
mechanism implementing the 〈TPM_〉Extend call.

34

4. Related work

When the vm attempts to read the pcr values using e.g. the 〈TPM_〉Quote
command, the vtpm internally uses a property filter with a policy which defines
how the aforementioned properties are mapped to the much simpler and smaller
160-bit pcrs.2

The immediate advantage of this abstraction is that, even if binary hashes
change, the certificates are not necessarily invalidated. Hence, the 〈TPM_〉Quote,
〈TPM_〉Unseal, and 〈TPM_〉CertifyKey operations continue to work if the properties
still hold. This corresponds exactly with the observation made by Sadeghi and
Stueble, namely, that users care about properties rather than configurations.

Moreover, Winandy et al. noted that their property based vtpm design has
advantages over the standard vtpm that was proposed by Berger et al. earlier.
Namely, the plain vtpm design map the lower pcrs of the physical tpm to the
lower pcrs of the vtpm, because this allows the configuration of the underlying
hypervisor to be included in attestations by the vm. However, the shortcoming
of such an approach is that when the vm moves to a new hypervisor, the vm
cannot use its old sealed data. On the other hand, the property-based vtpm
does not suffer from this limitation, because multiple hashes can map to the
same property.

Applicability. In summary, the property-based vtpm has a distinct advantage
over the vtpm which was discussed earlier in this chapter. However, in spite of
these advantages, practical considerations limit the role property-based vtpms
can play in this thesis.
For an ordinary vtpm, the source code is readily available; unfortunately,

not so for property-based vtpms. Moreover, the problems addressed by the
property-based vtpm are orthogonal to the problem statement of this thesis. By
itself, property-based vtpms are not more secure than vtpms with respect to
the adversaries from our attacker model. This means that we will not implement
property-based vtpms for this thesis; though we include this concept in the key
deployment discussion in the architecture chapter.

4.3. Disaggregating Dom0

Murray et al. reviewed the tcb of Xen, and their conclusion is that the tcb is
too large primarily due to the domain building code residing in dom0 [MMH08].
This is an important observation, and it also influences the architecture proposed
in this thesis.

2Property-based vtpms still comply with the tpm specifications [TCG03].

35

4. Related work

domb domu

hw tpm

hw tpm
driver

vtpm
manager /dev/tpm

Figure 4.3: The domb domain builder design. All vtpms live in the domb.
Adapted from Murray et al. [MMH08].

Recall that the Xen hypervisor is a thin, type-i hypervisor, and that it
explicitly defers the domain building process to the management domain. Fur-
thermore, recall that the domain builder process involves privileged steps which
include the power to introspect other vms.
Murray et al. put forward a solution which greatly reduces the tcb by

removing dom0 from the tcb. The authors propose to put the domain building
code in a very small domain, running mini-os. This small domain, named domb,
has the introspection powers that dom0 used to have and is therefore part of the
tcb. In contrary to dom0, this domb does not stand under supervision of the
cloud administrator. Therefore, it can be considered a ‘user space’ extension to
the hypervisor.
Furthermore, the authors have realized the synergy that is possible with

vtpms architectures. By placing the vtpms inside their domb, they claim
protection of the vtpms against dom0, though it would be better to place a
vtpm in a private, isolated domain. Figure 4.3 illustrates how Murray et al.
have added vtpm functionality to domb. Also shown is a hardware tpm driver,
which they use to associate the vtpm with the hardware tpm.

Undiscussed in their paper is how domb itself is booted, which is a chicken-
and-egg problem.

Applicability. At first sight, it appears that their approach provides confi-
dentiality and integrity of the cloud consumer hvks and vm (requirements R1
and R2) because dom0 cannot introspect anymore.

36

4. Related work

However, the authors leave some security aspects unanswered — which are
important for an actual deployment. First, they do not address secure storage
of the vtpms’ state during operations such as rebooting or suspension. Second,
it is unclear how the cloud consumer, leveraging a vtpm hosted in domb, can
actually deploy credentials to a vtpm in a secure fashion.
With regard to the first point, they claim that the cloud consumer can take

care of the protection of the secondary storage of his or her vm using full disk
encryption (fde) such as Bitlocker [Fer06]. While this argument itself holds,
it presupposes that the vtpm is trusted, and they have not argued how they
would do this — while the vtpms are safe in domb during runtime, this is not
the case if the vtpms themselves are flushed to secondary storage when the
hypervisor (and thus also domb) reboots.
With regard to the second point, even if we assume they would seal these

vtpms to the physical tpm, this does not explain how cloud consumers get their
hvks securely to their vtpm without the risk of interception or a man-in-the-
middle attack by dom0 over channel C5.
Hence, their proposal by itself is not sufficient for our goals. Nevertheless,

the essence of their solution, namely the disaggregated domain builder, plays a
role in our architecture, presented in chapter 5.

4.4. Breaking up is hard to do: security and functionality
in a commodity hypervisor

Colp et al. take the concept of disaggregating dom0 a step further in their
‘Xoar’ design and disaggregate dom0 into nine classes of service vms [Col+11].
These nine classes are chosen such that each class represents a single piece of
functionality originally located in dom0. For instance, a domain-builder domain,
a Xenstore domain, and a disk back-end domain are service domains introduced
by their Xoar design.
In addition to the immediate isolation benefits that such a far-reaching

segregation provides, the authors add extra security features to control these
service domains. Some of these additional features are fairly standard and are
not discussed (e.g. a policy for hypercalls, off-site logging), while other features
are an interesting new approach which can strengthen the disaggregation. For
example, they propose automatic (policy-based or timer-based) snapshots and
rollbacks of the service vms, based on observations that it is generally easier
to reason about a program’s correctness at the start of execution rather than
over long periods of time [Can+04]. A use case of such automatic rollbacks is
communication with the Xenstore service domain: the policy could stipulate

37

4. Related workhardware. The lowermost box shows the size of the most
privileged component that must be fully trusted.

0

100000

200000

300000

400000

500000

NOVA Xen KVM KVM-L4 ESXi Hyper-V

L
in

es
of

So
ur

ce
C

od
e

Hyper
visor

Linux

L4

Hyper
visor

Hyper
visor

User
Env.

Dom0
Linux

L4
Linux

2008
Server

VMM

Qemu
VMM

Qemu
VMM

Qemu
VMM

Figure 1: Comparison of the TCB size of virtual environments.
NOVA consists of the microhypervisor (9 KLOC), a thin user-
level environment (7 KLOC), and the VMM (20 KLOC). For Xen,
KVM, and KVM-L4 we assume that all unnecessary functionality
has been removed from the Linux kernel, so that it is devoid
of unused device drivers, file systems, and network support. We
estimate that such a kernel can be shrunk to 200 KLOC. KVM adds
approximately 20 KLOC to Linux. By removing support for non-
x86 architectures, QEMU can be reduced to 140 KLOC.

The Xen [2] hypervisor has a size of approximately 100
thousand lines of source code (KLOC) and executes in
the most privileged processor mode. Xen uses a privileged
“domain zero”, which hosts Linux as a service OS. Dom0
implements management functions and host device drivers
with direct access to the platform hardware. QEMU [4]
runs as a user application on top of Linux and provides
virtual devices and an instruction emulator. Although Dom0
runs in a separate virtual machine, it contributes to the
trusted computing base of all guest VMs that depend on its
functionality. In our architecture privileged domains do not
exist. KVM [17] adds support for hardware virtualization to
Linux and turns the Linux kernel with its device drivers into
a hypervisor. KVM also relies on QEMU for implementing
virtual devices and instruction emulation. Unlike Xen, KVM
can run QEMU and management applications directly on
top of the Linux hypervisor in user mode, which obviates
the need for a special domain. Because it is integrated
with the kernel and its drivers, Linux is part of the trusted
computing base of KVM and increases the attack surface
accordingly. KVM-L4 [29] is a port of KVM to L4Linux,
which runs as a paravirtualized Linux kernel on top of an L4
microkernel. When used as a virtual environment, the trusted
computing base of KVM-L4 is even larger than that of
KVM. However, KVM-L4 was designed to provide a small
TCB for L4 applications running side-by-side with virtual
machines while reusing a legacy VMM for virtualization. In
NOVA, the trusted computing base is extremely small both

for virtual machines and for applications that run directly on
top of the microhypervisor.

Commercial virtualization solutions have also aimed for
a reduction in TCB size, but are still an order of magnitude
larger than our system. VMware ESXi [39] is based on
a 200 KLOC hypervisor [38] that supports management
processes running in user mode. In contrast to our approach,
ESXi implements device drivers and VMM functionality
inside the hypervisor. Microsoft Hyper-V [26] uses a Xen-
like architecture with a hypervisor of at least 100 KLOC [22]
and a privileged parent domain that runs Windows Server
2008. It implements instruction and device emulation and
provides drivers for even the most exotic host devices, at the
cost of inflating the TCB size. For ESXi and Hyper-V, we
cannot conduct a more detailed analysis because the source
code is not publicly available.

A different idea for shrinking the trusted computing base
is splitting applications [35] to separate security-critical
parts from the rest of the program at the source-code level.
The critical code is executed in a secure domain while the
remaining code runs in an untrusted legacy OS. ProxOS [36]
partitions application interfaces by routing security-relevant
system calls to trusted VMs.

Virtual machines can provide additional security to an
operating system or its applications. SecVisor [31] uses a
small hypervisor to defend against kernel code injection.
Bitvisor [34] is a hypervisor that intercepts device I/O to
implement OS-transparent data encryption and intrusion
detection. Overshadow [7] protects the confidentiality and
integrity of guest applications in the presence of a com-
promised guest kernel by presenting the kernel with an
encrypted view on application data. In contrast to these
systems, the goal of our work is not to retrofit guest oper-
ating systems with additional protection mechanisms, but to
improve the security of the virtualization layer itself.

Virtualization can also be used to replay [10], debug [16],
and live-migrate [9] operating systems. These concepts are
orthogonal to our architecture and can be implemented on
top of the NOVA microhypervisor in the user-level VMM.
However, they are outside the scope of this paper.

4. NOVA OS Virtualization Architecture
In this section, we present the design of our architecture,
which adheres to the following two construction principles:

1. Fine-grained functional decomposition of the virtualiza-
tion layer into a microhypervisor, root partition manager,
multiple virtual-machine monitors, device drivers, and
other system services.

2. Enforcement of the principle of least privilege among all
of these components.

We show that the systematic application of these principles
results in a minimized trusted computing base for user appli-
cations and VMs running on top of the microhypervisor.

Figure 4.4: Overview of various tcbs. Figure from Steinberg and Kauer [SK10].

that the Xenstore is restored after each request, meaning that each request can
be reasoned about as if it is the first after booting, making analysis easier.

Applicability. Xoar is the epitome of disaggregating the management domain
in Xen. However, in this thesis disaggregation is a tool for achieving a higher
purpose, and not a goal by itself. Disaggregation of dom0 helps us to ensure
that the cloud consumer’s assets are secure against the malicious insider — but
any disaggregation beyond this level does not (essentially) add security to our
design. Hence, while the Xoar effort is commendable, considering that their
source code is not available, we will not attempt to recreate their advanced
degree of disaggregation in this thesis.

4.5. The NOVA microhypervisor

Introduction to microkernel design. Operating system kernels are generally
divided into two categories: monolithic kernels and microkernels. The former
refers to the architectures that contain relatively much code that runs in kernel
mode, while the latter strips the code in kernel mode to the bare minimum (e.g.,
inter-process communication, virtual memory, and scheduling) and runs as much
code as possible in user mode. Advocates of microkernels highlight the cleaner
design and security benefits of the inherently reduced tcb. A typically cited

38

4. Related work

Guest
operating
system

vmm

Guest
operating
system

vmm

Guest
operating
system

vmm

Guest
operating
system

vmm

Root partition managerApplications Drivers

Microhypervisor

guest

host

user
kernel

Figure 4.5: Nova architecture. Since the microhypervisor strictly separates
between processes, not all code running in host mode is in the tcb. As an
example, we highlight in red the tcb components for the first vm (marked in
blue) to show that the strict isolation in the microhypervisor design implies
that not all hypervisor components are in the tcb. Figure based on original
by Steinberg and Kauer with different coloring [SK10].

example is that hardware drivers do not need to run in kernel mode anymore.
This is cited as a great benefit since hardware drivers tend to be the most prone
to bugs in the code. On the other side, monolithic kernel proponents claim that
the overhead in microkernels leads to performance degradation [Lie96].

While the debate fizzled out after some years, with monolithic kernels seeming
to have the upper hand (Linux and Windows are both examples), there has
been renewed interest. With the advent of the l4 kernels [Lie+95], which greatly
reduced the performance issues associated with microkernels, many new variants
and derivatives have been developed, although hardware vendor driver support
remains problematic.

NOVA. Nova os virtualization architecture (nova) by Steinberg and Kauer
is the logical extension of a microkernel design with virtualization capabili-
ties [SK10]. It is a response to the critique that many of today’s commodity
hypervisors have a too large tcb. If a microkernel can be turned into a hy-
pervisor without losing its attractive features; then they might be an excellent
candidate for designing a hypervisor from scratch.
The nova architecture makes heavy use of the Intel and amd virtualization

cpu instructions (which were briefly introduced in section 2.3) to provide an
emulated physical machine to oblivious vms at minimal performance penalties.

39

4. Related work

These cpu instructions do not merely add an extra protection ring to the
processor, but in fact they double these by cloning all these protection rings
into an environment in which the vm runs (the so-called guest environment,
as opposed to the host environment in which the hypervisor runs). This is
visible in Fig. 4.5, where it can be seen how nova utilizes the rings available
in the host environment to create different levels of privilege for code in the
hypervisor itself. Examples of hypervisor code running in lower privilege are the
virtual machine manager, drivers and custom administrator-provided additional
programs known as nova applications.

It is claimed that by the broad application of the principle of least privilege,
the nova design should be more secure than competitive designs. However,
these claims are hard to gauge. Nevertheless, the authors of nova presented a
comparison of source lines of code, visible in Fig. 4.4, with which they argue
that their approach provides a drastically reduced tcb.

Applicability. In order to consider how nova could satisfy our requirements,
we imagine the following scenario: A vtpm is turned into a nova application,
which (as mentioned above) runs in the hypervisor in user mode. This vtpm
then offers cryptographic services to its associated virtual machine via emulated
devices. Furthermore, it also is straightforward to apply passthrough encryption
in the vmm to any disk or network streams passing through.

Such a design would then allow a cloud consumer to store hvks in this vtpm,
safe from externals and from the cloud administrator — at least, as long as no
malicious code is loaded into the hypervisor by the csp.3 Likewise, because
there is no management node, the cloud administrator cannot interfere with
the virtualization process. This would be satisfactory for both our two most
important requirements: the security of the hvks and vm (R1, R2).

However, the lack of a management node is very crippling, even unrealistic for
csps. A csp will not do the administration of all the machines manually, so some
sort of management node must be introduced on which a cloud administrator
has privileges.
Furthermore, all microkernels suffer from a lack of hardware support and

nova is no exception. Hardware vendors are already struggling with providing
drivers for the many different monolithic kernels out there, let alone microkernels.
Neither the prospect of a hardware lock-in nor the prospect of having to write
drivers themselves is much appealing for a cloud service provider. As such, we

3It will be necessary to use tc techniques so that the cloud consumer can verify this. A
deployment scheme similar to what we will describe in the architecture chapter can be used.
However, for brevity, we will not pursue this further for nova.

40

4. Related work

Alice Cloud verifier Node
controller

vm Other
vms

1 2

45

3
6

Figure 4.6: The cloud trust anchor design by Schiffman et al. [Sch+10]. 1 Alice
requests an attestation of the cv and its criteria. 2 The cv verifies the
cloud’s ncs. 3 Alice starts her vm. 4 The nc sends an attestation and
identity key of Alice’s vm to the cv. 5 The cv forwards these to Alice. 6

Alice uses the key to authorize her vm to access her data on the cloud after
validating the key signature and verifying the vm attestation.

decided not to pursue our solution using nova.

4.6. Seeding Clouds with trust anchors

Schiffman et al. make the observation that the trusted computing infrastructure
in today’s clouds is very limited [Sch+10]. The two main challenges they highlight
are [Sch+10]:

1. Cloud consumers have no knowledge on which host their vms are (or
will be) deployed. However, the csp requires them to provide their data
beforehand, thus in this gap the security may already be violated.

2. Due to its nature, the tpm is a slow device and responding to many
attestation requests from the many consumers located on a host could be
a performance bottleneck.

Their proposed solution is a cloud verifier (cv). This is a service which
vouches for the integrity of a cloud consumer’s vm as well as the underlying
system, i.e. it vouches for the enforcement of properties on the target hosts.
As such, cloud consumers delegate to the cv to perform the job of attesting
the target infrastructure. By attesting the cv, cloud consumers can verify that
their trust in the cv is justified.
In Fig. 4.6, a summary of their architecture is shown. The basic principle is

that Alice’s vm can only access her data if the tcb is properly attested. The
cv performs this attestation on her behalf, while she will attest the vm.

In their paper, they discuss their implementation details (such as using ipsec
as well as more details about the protocols) but that does not change the design
as discussed so far.

41

4. Related work

Applicability. One observation about this scheme is that Alice’s vm is already
booted and running before Alice has received the necessary information to make
a judgment about the trustworthiness of the infrastructure. In other words, the
vm that Alice supplies to the csp, must be split across at least two stages. The
first stage must not contain any data of which the confidentiality or integrity
is to be protected. Only in the stage two, when the vm can access encrypted
storage after having received the necessary keys from Alice, can data be stored
which ought to be protected.

While their design is interesting, the dual approach to deploying vms to the
cloud is unappealing. Preferably, Alice should not need to split her data in two
parts. This is a point which is addressed in the caas architecture proposed in
this thesis.

4.7. Cloudvisor: retrofitting protection of virtual
machines in multi-tenant cloud with nested
virtualization

Cloudvisor is a tiny security monitor placed underneath a commodity hyper-
visor [Zha+11a]. The authors of Cloudvisor assume that the hypervisor is an
untrusted component, therefore, they position Cloudvisor in the role of enforcing
access control on the hypervisor.
Their approach is to degrade the privilege level of the hypervisor to that of

an ordinary vm kernel and letting only Cloudvisor run at the highest privilege
level. To achieve this, Cloudvisor interposes on updates of page tables as well
as on disk input and output. The authors claim that Cloudvisor provides a
complete confidentiality and integrity protection for the customer under a strong
attacker model; not only other customers but also the cloud operator is assumed
untrusted. Their confidentially and integrity claim — in face of this strong
attacker model — relies on the established tc technologies (cf. section 2.3).
Without trusted computing, a tampered Cloudvisor can void all security claims.

Cloudvisor exists only for Xen, although the authors claim it can be ported
to other hypervisors.

Applicability. The functionality Cloudvisor provides can be summarized in
two points: (i) protection against the cloud operator, and (ii) the reduction of
the tcb of Xen. These are two orthogonal issues.
Regarding the protection against the cloud provider, the authors give only

little information on how the Xen components have been changed. However,

42

4. Related work

there are some hints in which they explain what they have changed. In the latter
part of their paper, they mention, “. . .we will also investigate . . . to support
para-virtualization in Cloudvisor.” From this we understand that Cloudvisor
does not support paravirtualization but depends on hardware virtualization
extensions. Paravirtualization is the default and dominant mode for running
Xen on all major clouds such as Amazon and Rackspace. Furthermore, it is the
only way to use Xen on platforms without hardware virtualization extensions.
Certain clouds, such as ec2, do provide the opportunity to run hvm vms,
albeit with the restriction of Windows only or only available for larger instance
types [WJW12].

The authors also write, “Cloudvisor ensures that a physical memory page can
only be assigned to one owner at a time.” This is the primary cause for the
significant Cloudvisor disk overhead of up to 55% for i/o intensive applications
such as webservers [Zha+11a]. For all i/o, Cloudvisor has to duplicate the data
from the domu’s i/o buffers into hypervisor buffers before the data is fed to
the hardware device.

Not only does their insistence on a single owner per memory page cause this
performance penalty, it also neglects the fact that shared memory pages play a
fundamental role in paravirtualized Xen.4 The authors stated their intent to
extend CloudVisor to pv mode. If they were to proceed with that, some form
of discretionary memory access control would need to be added to Cloudvisor,
causing a further increase of Cloudvisor’s tcb.

Tcb reduction. The reduction of the Xen tcb provided by Cloudvisor is a
valid goal; during the last years, many authors have shown that improvement is
necessary [SK10; MMH08]. Xen’s large tcb is primarily caused by the inclusion of
the management domain (dom0) in the tcb. However, the authors of Cloudvisor
make the conjecture that the hypervisor component is also bloated and needs
reduction. This seems a contradiction with the fact that Xen is a bare-metal
hypervisor (type-i) which defers a lot of non-essential work to the management
domain (e.g., domain building and communication with hardware devices).
Hence, the Cloudvisor effort displays a large overlap with the Xen development
which already focused on keeping the hypervisor minimal.

A consequence of this overlap could be that the claimed tcb gains by Cloudvi-
sor might not be sustainable in a real environment, as opposed to the laboratory
conditions under which Cloudvisor was developed. For instance, as soon as
Cloudvisor has to support paravirtualization or all of the multiple architectures
(x86, x86-64, ia-64, arm) that the Xen hypervisor supports, the code will grow.

4Refer back to subsection 2.2.1 for a discussion on grant tables and how all pv drivers
depend on this.

43

4. Related work

At this point, it is more logical to compare Cloudvisor not with vanilla Xen,
but rather with other solutions which do not support paravirtualization. In face
of these other approaches, Cloudvisor hardly comes across as an architecturally
appealing solution.

Consider the following design choices they made. For instance, for operation
of the full disk encryption, the Cloudvisor security monitor depends on a daemon
running in the management domain, i.e., a communication channel bypassing the
hypervisor and breaking the encapsulation. Furthermore, the role that remains
for the hypervisor in the Cloudvisor design seems unclear. The prime existential
reason for the Xen hypervisor, namely tracking page ownership and page table
updates, has been overtaken by the Cloudvisor monitor. Therefore, the Xen
hypervisor could be removed or stripped down in the Cloudvisor architecture.
Effectively, this is a patchwork approach to a microhypervisor (cf. section 4.5)
in which certain hypervisor duties run at a lower privilege level. In that respect
Cloudvisor offers no real benefits over designs such as nova, which have a clean
architecture and a tcb in the same order of magnitude. (Cloudvisor’s claimed
5.5 kilo lines of code (kloc) and nova’s 9 kloc are in the same magnitude
when compared with a Linux of more than 200 kloc, see Fig. 4.4.)

The orthogonal proposal the authors make, namely to use tc technologies
to ensure to the cloud consumer that a trusted version of the virtualization
environment is running, is indeed a viable approach and also a central theme
of this thesis. However, their discussion of using tc technologies does not go
beyond plugging it into their design and requiring that attestation must be
used, omitting the details. They only suggest a simple protocol which relies
on attestation and hybrid encryption, referring to “the public key” without
specifying which key this is and how it is created. On the contrary, in section 5.3
of this thesis a detailed implementation of tc technologies is presented.

4.8. Self-service cloud computing

Butt et al. introduce the self-service cloud (ssc) computing model which splits
administrative privileges between a system-wide domain and per-consumer
administrative domains [But+12]. This allows cloud consumers to securely spawn
their own meta-domain over which they have control, including their own user
dom0. This meta-domain is isolated from an untrusted dom0 using a mandatory
access control in the hypervisor, and everything not strictly needed to be run
in dom0 is moved to consumer control.

The self-service meta-domains can be extended using so called service domains.
These allow a wide range of consumer-controlled services to be made available, for

44

4. Related work

Consumer’s meta-domain

Hardware

Hypervisor

dom0 Domain
builder udom0 udomu Security

service
Regulatory
compliance

Figure 4.7: The overview of the self-service cloud approach. The system-wide
tcb is shown in red, while the cloud-consumer-level tcb is shown in green.
The cloud consumer’s meta-domain contains a private dom0 and a set of
service domains. A subset of these service domains are the mutually trusted
(between consumer and csp) service domains, which includes a regulatory
compliance monitor. Figure based on Butt et al. [But+12].

example domu introspection, storage intrusion detection, and storage encryption.
An overview of the ssc design is given in Fig. 4.7. In addition, the authors
introduce mutually trusted service domains as part of their design. Such
mutually trusted domains can solve a source of tension in cloud computing,
namely that cloud consumers want privacy while csps want assurance that
the resources are not used for malicious purposes. Using the mutually trusted
domains, these two parties can agree that the csp can inspect the consumer’s
vms for compliance, while the consumer can verify that the mutually trusted
domain does not reveal data but only discloses violations of the agreed-upon
rules.

Applicability. Butt et al. developed their ssc design independently and in
parallel to the work in this thesis, and there are a number of similarities between
their design and the design presented in this thesis. Both designs have the
concept of extending the vm of a consumer with additional service vm(s), have
an encrypt on-the-fly functionality, and both designs anchor the vms with
trusted computing.
There are also differences, however. For example, we discuss the tc boot-

strapping in more detail, coupled with a complete tc implementation, with a
focus on the entire process of how the consumer actually gets his or her keys
securely in the cloud. In addition, we base our service vm on mini-os, which
has a minimal tcb and is well-suited for the role of service domain in Xen,
while their service vms are based on (trimmed down) Linux kernels.

45

5. Architecture

The contribution of this thesis, the cryptography as a service (caas) design, is
introduced and discussed in this chapter. This architecture is an improvement
of existing virtualization designs such that the requirements posed in chapter 3
are satisfied. This chapter is divided in two complementary sections. First,
after a brief introduction, the design is introduced in a high-level overview in
section 5.2. Second, in section 5.3 we explain how the caas design fits in an
overall cloud computing environment.

Since our reference implementation is based on the Xen hypervisor, we apply
the Xen terminology when describing the caas design. Nonetheless, the caas
architecture and its principles can be applied to any type-i hypervisor design.

5.1. Introduction

Recall the requirements outlined in chapter 3. The protection of the hvks
necessitates a segregation between “normal” and “high-value” vm data and
a reflection of this in the Xen architecture. A design which approaches the
problem with a combination of data and privilege segregation could look as
shown in Fig. 5.1 and is summarized in the following two points.

1. Split off the hvks from the ordinary vm data by placing the hvks in
a separate vm. These two vms must then communicate over a strictly
defined interface.

2. Curtail the influence of the powerful malicious insider adversary on these
vms through stronger access control in the hypervisor.

However, these two measures do not address how to provision the hvks to
this isolated vm. In fact, all straightforward approaches to provision hvks
securely are subject to a chicken-and-egg problem, as exhibited in Fig. 5.2.

Observe that if a decryption key is provided directly alongside a vm then an
insider has access to this key, too. On the other hand, to deploy a key at runtime
requires a secure channel with a vm. Setting up such a secure channel by basing
the channel on a pre-shared key only shifts the aforementioned problem one

46

5. Architecture

virtual machineIsolated vm

isolation

Use of hvksHow to pro-
vision hvks?

Figure 5.1: Segregation and isolation of hvks is useful, but does not answer
how to provision keys.

Deploy vm
to the cloud

Use en-
cryption?

Data exposed to a
malicious insider

Needs key

How to
provision
the key?

no

yes

In vm image At runtime

Private key needed
for secure communi-
cation channel

Figure 5.2: The chicken-and-egg problem with key deployment in the cloud.
Even if the memory of a vm is protected, an out-of-band channel for secure
deployment of keys is necessary. For instance, trusted computing.

47

5. Architecture

level down (since the adversary can also read this pre-shared key). A similar
argument holds if the secure channel would be based on a public key and a
certificate to check it — one cannot be certain that the root certificate in the vm,
which is used to verify certificates, has not been tampered with. Lastly, hoping
to avoid pre-sharing a key by using a Diffie-Hellman-based approach at runtime
is not viable either due to being prone to man-in-the-middle attacks [Sta06,
p. 301]. (To see this, recall that the malicious insider controls channel C5.)

Therefore, a solution to provide hvks out-of-band is necessary. This key role
will be played by trusted computing since it allows deployment of hvks such that
they are bound to a trusted software configuration. Therefore, in addition to a
segregated hvk storage (which we call the cryptographic assistance domain) and
hypervisor access control, it will be necessary to introduce a third component,
called the trusted domain builder, which is trusted and communicates with the
tpm. These three components are presented in the following section.

5.2. Design

Figure 5.3, shows a high-level overview of the caas design. The architecture
revolves around three main components, marked with numbers in the figure,
which function as follows.

5.2.1. Cryptographic assistance domain

component: A minimal assistance vm which is supplied with keys by the cloud
consumer and operates in an isolated environment. It exposes passthrough
devices to the cloud consumer’s vm. (See 1 in Fig. 5.3.)

satisfies: This step provides protection against the external adversary for the
assets which are required, that is, the hvks. By segregating the hvks in
a shielded environment for which the keys are provisioned at deployment
and not directly accessible during runtime, these keys are safeguarded
even in case of a total breach of the domu by an external attacker.
This is a step towards fulfilling requirement R1 (protection of the hvks),
for it covers the external adversary aspect of this requirement.
Furthermore, this is a step towards requirement R2 (protection of the
vm) with respect to the malicious insider adversary; by encrypting data
streams for virtual device i/o, the vm confidentiality and integrity are
protected for attack channel C5.

48

5. Architecture

Hardware tpm

Xen hypervisor

Management
vm

Malicious
insider

Trusted
domain

builder vm

Crypto
assistance vm

Cloud con-
sumer’s vm

for each consumer

2

privileged
attacks

3

1

Figure 5.3: High-level overview of the caas architecture. The harddisk symbols
indicate block drivers and the key symbol is the encryption key used for
passthrough encryption. The red dashed line is encrypted traffic and the blue
dashed line is unencrypted.

method: A key facet of this cryptographic assistance domain (domc) is that it
exposes a block device which the cloud consumer’s vm can attach to. All
data that the consumer’s vm sends through this device is encrypted on
the fly before forwarding it to the management domain. In this way, no
matter where the actual data is stored in the cloud, the adversary cannot
access it.
Not shown here (though discussed later) is that besides as a key used
for the passthrough encryption, hvks can also be exposed to the domu
through a vtpm interface, thus acting as a virtual hsm.

5.2.2. Hypervisor access control

component: The access control resides in the hypervisor, and affects primarily
the management domain by curbing hypercalls. (See 2 in Fig. 5.3.)

satisfies: This component is a step towards fulfilling requirements R1 and R2
(protection of the vm and hvks) with respect to the malicious insider for
attack channel C4.

method: The privileges of the management domain (dom0), i.e. the cloud

49

5. Architecture

administrator, are curtailed by the addition of access control in the
hypervisor. The hypercalls which are restricted, are those through which
the management domain can attack other vms (in particular, privileged
hypercalls with the ability to read the memory of vms).
However, this means that some legitimate, but privileged, tasks that the
management domain used to do, such as domain building, must now be
relocated elsewhere, i.e. in the trusted domain builder — it is simply
not feasible to determine at runtime when a hypercall is being used for
legitimate and when for malign purposes, especially considering valid use
cases such as vm suspension which occur after a vm has been launched.

5.2.3. Trusted domain builder

component: A trusted domain builder that also has exclusive access to the
tpm. (See 3 in Fig. 5.3.)

satisfies: This component completes the requirements R1 and R2 (protection of
the vm and hvks), because the aforementioned components strongly rely
on this component to satisfy their requirements. By implementing the
necessary workflow to deploy keys out of reach of all of the adversaries on
the one hand, and by taking over the domain building responsibility from
dom0 on other hand, this component has a key role in satisfying these
two requirements.
This component also implements requirements R3 to R5 though these
details are more of a technical nature and are discussed later.

method: The trusted domain building domain (domt) has taken over the tasks
of starting (and suspending, resuming, etc.) vms from the management
domain, since, as mentioned, dom0 no longer possesses the necessary
privileges.
Furthermore, this domain has the exclusive permission of communicating
with the tpm, as guaranteed by the aforementioned access control com-
ponent. The tpm is leveraged to enable the cloud consumer to encrypt
hvks such that only domt can decrypt these, which domt then injects
into the domc. As explained in the previous section, the use of the tpm
is necessary because ordinary ways of delivering hvks to the domt are
exposed to the adversary. Placing the tpm logic in the hypervisor would
be a violation of the Xen philosophy of a slim, minimal hypervisor.
Remark: It is imperative that the malicious insider adversary cannot
tamper with domt since it is a trusted component. This implies that the

50

5. Architecture

low-level steps of loading and running domt may not be a responsibility
of the cloud administrator. Rather, the hypervisor starts this domain
immediately after booting, and the cloud administrator can only interact
with it over a strictly defined interface.

5.3. Key provisioning

We argued that trusted computing is needed to deploy hvks to the cloud securely.
In this section, we give two approaches to using tc with the caas design. The
first is a basic scheme, which, although secure in a limited context, does not
meet the requirements of a real cloud environment. The second scheme that
is described introduces a ttp which improves the usability of the deployment
scheme at the cost of an external dependency. For this section, it may be
necessary to refer back to the tc introduction in section 2.3.

5.3.1. The basic scheme

The basic scheme involves the most simple secure workflow. A tpm-bound
public key is shared with the cloud consumer who uses this key to deliver his or
her hvks to the domt in encrypted form. The domt will then request the tpm
to decrypt the hvks on its behalf.

The public key used is not an ordinary asymmetric key but a certified binding
key which guarantees that the key can only be used by trusted software. Using
certified binding keys for securely delivering secrets has been successfully applied
before [Sad+07]. (Although such previous use cases are in a non-cloud scenario,
this does not affect how the tc technology works.)

Figure 5.4 exhibits the interaction with the tpm to set up and distribute
a certified binding key. For clarity, we omitted the required tpm overhead
such as encapsulating commands in osap and oiap sessions1 and supplying
authentication data (password) parameters.2 Likewise, we assume that the
tpm has been taken ownership of, and that either the srk authentication data
(password) is set to a well-known value or that domt possesses this information.

The first step in the scheme is that domt creates a certified binding key
which is represented as the pair (PKBIND, SKBIND). Second, this key and its

1These sessions are used to protect the freshness of communication with the tpm and also
obviate the need to send passwords to the tpm in cleartext.

2We do not use a nonce in the key certification. The reason is that it is not important
when the key has been generated and certified, but what its properties are. Because the
binding key is non-migratable, these properties will never change [SSB07, p. 61].

51

5. Architecture

:consumer :dom0 :domt :tpm

〈TPM_〉ReadPubEK()

PKEK

〈TPM_〉PCRRead(pcr=17..19)

r := {p17, . . . , p19}

〈TPM_〉CreateWrapKey(

type=bind,
pcrs=r,
locality=2,
parentKey=HSRK

)

PKBIND, ESKBIND

〈TPM_〉LoadKey2(PKBIND, ESKBIND)

HBIND

〈TPM_〉CertifyKey(key=HBIND, by=PKEK)

CBINDstore(
PKBIND,
CBIND,
PKEK

)

retrieve()

PKBIND, CBIND, PKEK

Figure 5.4: Interactions between consumer, dom0, domt and tpm for receiving
a binding key.
PK is a public key, ESK is a tpm-encrypted secret key, C is a certificate, H
is a tpm-specific key handle.

52

5. Architecture

certificates are stored in dom0, since domt does not have network access. Third,
dom0 distributes the key and its certificates to the cloud consumer (though in
practice this would flow via the cloud infrastructure). Before using the key, the
cloud consumer will verify the certificates and check whether the software to
which the key is bound corresponds to a list of known hash digests of trusted
software.

Data structures. Once the cloud consumer is in possession of the certified
binding key and has verified it, he or she can use this to encrypt hvks and send
these to the cloud. However, not only the hvks are encrypted (req. R1); the
vm as a whole needs to be encrypted, too (req. R2). This is captured in the
following definitions. (These data structures are discussed in more detail in
appendix B.2.)

• Encrypted virtual machine (evm): the cloud consumer’s vm, encrypted
using a symmetric key.

• Virtual machine control blob (vmcb): a blob of important metadata
regarding the vm, in particular the symmetric key used for the evm. This
blob itself is encrypted using the npk.

• Node public key (npk): a name for the set of the public binding key and
its certificates (the ek public key with its endorsement credential and the
certificate on the binding key which describes the pcrs used). When we
use the term node, we refer to one of the physical vm-hosting machines in
the csp’s data center.

5.3.1.1. Discussion on the basic scheme

While the thus far described scenario provides ample security against eaves-
droppers, there is room for improvement.

1. The appraising party (the consumer) has no guarantee that the ek belongs
to a real tpm and not a malicious, virtual tpm. A solution for this is to
rely on endorsement credentials supplied by tpm manufacturers together
with the tpm. (That is, if appraisers trust the manufacturer.) In practice,
however, such certificates are not consistently issued by manufacturers,
and even if we find one then we cannot rely on it for this very reason,
since csps do not like to be locked-in to specific vendors.

53

5. Architecture

2. In the protocol we encrypt the vmcb for one specific tpm. This means
that the vm cannot be migrated to another machine. It also removes the
freedom on the csp’s part of deciding where the vm is run (e.g., in a part
of the cloud which is under the least load at that moment) but instead
necessitates that the vm is deployed on the specific node for which the
binding key was given to the consumer.

3. The burden of interpreting the pcrs lies at the consumer. Verifying pcr
measurements is notoriously demanding: the number of valid configura-
tions in a commodity os is huge due to the sprawl of libraries and all
the different versions of this software. The challenger has, in theory, to
analyze whether every existing operating system and every patch-level
has the “desired” configuration [SS04].

Fortunately, the set of valid software configurations of the tcb we are
considering in this thesis (the hypervisor plus a few tools) is a magnitudes
smaller than the configurations in a typical Windows or Linux tcb.
Moreover, we can be much more stringent in which version we allow or
not. One may expect a csp to be resolute in keeping systems up to date
(even if the outdated version has not been proven vulnerable), more so
than one may expect of end users in a desktop trusted computing setting.
Nevertheless, it remains a daunting task for consumers to verify the hashes
themselves if the task is not delegated. Consumers would need to compile
all the software themselves in order to verify the hashes. Moreover,
any proprietary changes made to Xen by the csp will — unless the
reluctant csps cooperate and give insight into their modifications — cause
mismatches.

4. The privacy of the csp is at risk. It is in the csp’s interest to keep the
cloud appearing homogeneous to consumers, but this is hard to guarantee.
a) Two consumers can easily see if they are co-resident by comparing

their received binding key fingerprints.
b) When recognizing a key fingerprint, it is easy for consumers to see

that they have been hosted at a certain node before, and cloud
consumers can use this information to determine the size of the cloud
using the birthday paradox.

Obfuscation techniques can be conceived (e.g., a fresh key for each cus-
tomer for each machine) but they will require careful engineering.

54

5. Architecture

5.3.2. The cloud verifier scheme

To address the issues associated with the simple scheme, we introduce a trusted
third party called the cloud verifier (cv). The cv has been introduced earlier
during discussion of related work in chapter 4. The cv is a concept introduced
by Schiffman et al. [Sch+10] though defined in a slightly different way. In their
paper, the cv attests the machines in the cloud, while we make use of binding
keys — two sides of the same tc coin. Although their protocols differ from
ours because of this, the principle of a ttp is similar in both cases.

The cv we define in this subsection has two main purposes. The first purpose
is to assist in the initial deployment, and the second purpose is to assist in
judging whether a host is trustworthy. Both purposes are discussed as follows.

Deployment assistance. The workflow in a typical commodity cloud is that
the cloud consumer starts with uploading a vm to the cloud which is stored
into the cloud storage. At any later point, whenever the cloud consumer desires
so, he or she can go the csp’s website and via the web interface indicate that a
vm must be started.3

Only at the moment of launching a vm does the csp decide on which node
the vm will be run (depending on load balancing in the cloud). This implies
that it is not possible for the cloud consumer to encrypt the vmcb for the
cloud beforehand, since at that moment cloud consumers do not know yet
where exactly their vm will be scheduled. Indeed, to not lose the flexibility
of launching vms in an automatic fashion, this implies that the csp needs
to connect to specific software at the cloud consumer and inform the cloud
consumer’s software to encrypt the vmcb for a certain cloud node. This is
a cumbersome and involved proces and some cloud consumers may not be
interested at all in running such software themselves.
Therefore, the cv takes over this role of assisting the deployment of vms

(which implies that cloud consumers encrypt their vmcb for the cv, who then
re-encrypts it for the cloud during deployment). In Fig. 5.5a it is shown how
the cloud consumer can delegate the deployment to the cv trusted third party
and sends the evm to the csp. (Recall that the evm is not usable without the
vmcb.) In Fig. 5.5b it is depicted how the csp “calls back” to the cv when the
actual deployment takes place.

3In most clouds, there are a multitude of ways to start new vms, such as via an api or
automatically through elasticity. But the general workflow is the same, in that the csp doesn’t
know beforehand where the new vm will be hosted.

55

cloud
cons.

cv

cloud
control

cloud
storage

cloud
node a

vmcb

evm

evm

(a) Preliminary deployment of a vm to the cloud. The large evm is sent to the cloud,
while the small vmcb is kept outside of the cloud.

cloud
cons.

cv

cloud
control

cloud
storage

cloud
node a

start vm
via webpanel

npka

vmcb
evm

do start

vmcb

(b) The consumer requests the launch of a vm. The cloud controller selects a node
from the pool which will host the vm and passes the node’s npk to the cv. The cv
has to make a judgment on whether the npk is trustworthy. If deemed trustworthy,
the vmcb is encrypted using the npk and the vm is started.

cloud
control

cloud
node a

cloud
node b

cv

do migrate
npkb

yes/no
npkb

embedded

(c) The cloud controller decides the vm needs to be migrated or cloned to another
node. The npk from the new node needs to be judged by the old node (likely with
help of the cv), and if deemed trustworthy, the operation is allowed.

cloud
node a

cloud
node b

cloud
storage

evm

vmcb

(d) The vmcb is encrypted using the npk of the new node, the evm fetched from
storage, and the vm is started.

Figure 5.5: Trusted deployment of vm to the cloud. For an explanation of the
nomenclature refer to p. 53.

5. Architecture

Judgments on trustworthiness. Making judgments about whether a host is
trustworthy or not is nontrivial. The difficulty of making judgments is due to
the plethora of distinct tpms, distinct software configurations, and the fact
that these change over time.4 Such a moment of judging trustworthiness of
software configurations takes place during initial deployment, or later on, when
migrating; in both cases, the judgment process compares pcr values to a list
of known values. In Fig. 5.5c, an example is shown of a migration request in
which the cv is involved.

In the process of judging trustworthiness, the cv can play an important since
the cv, as a specialized entity, can have access to more information than a
cloud consumer can. For example, it might have an accurate list of pcrs by
having signed a non-disclosure agreement (nda) with the csp, or perhaps it
has an accurate list of all the eks of the tpms of all the nodes belonging to the
csp. In either case, the process of judgment involves (i) taking a node’s npk
(in particular, of course, the listed pcrs) and (ii) evaluating it using a policy
which contains lists of trustworthy pcrs, valid endorsement credentials, etc.

The policy, which is effectively a finite set of rules, could be fully embedded
into the vmcb (depicted in Fig. 5.5c). This implies that the cloud consumer
needs to have knowledge of all critical information such as pcrs and which nodes
the cloud providers has when creating the vmcb for the first time. Unfortunately,
it is infeasible for the cloud consumer to gather and embed all this information,
moreover since it is constantly changing.5 Indeed, this is a compelling argument
to use a cv instead.
Alternatively, one could also consider an approach akin to property-based

vtpms, although this idea is not pursued in this thesis. In essence, instead of
embedding raw pcrs into the policy, the public key of a property provider could
be embedded instead. This could allow for a more flexible approach with a set
of different property providers, each vouching for a different area of expertise
(one for the list of valid pcrs hashes, one for the list of valid eks, etc.) Of
course, this introduces new challenges as well, such as revocation of certificates.

4Note that talking to a genuine tpm is not enough, even if it is seems to be coming from
the ip-range of the target csp. Our attacker model relies on the assumption that physical
attacks are not possible, therefore the csp must make known those platforms which are in the
physical security area. Otherwise, malicious insiders could use machines under their physical
control from the same ip-range as the data center to lure cloud consumers into sharing secrets.

5For instance, hypervisors do have vulnerabilities from time to time [XSA15; XSA16], and
therefore it must be possible to strike out a vulnerable version from the set of valid software
configurations.

57

5. Architecture

5.3.2.1. Discussion on the cloud verifier scheme

A cv can, in principle, be fulfilled by anyone. However, csps will be highly
reluctant to share the fingerprints of their nodes, if only because it shows the
size of their cloud. To a lesser extent, they will be reluctant to share the source
code of their proprietary changes to the hypervisor software (which is necessary,
else it is not possible to decide whether a hash is trustworthy or not).

Hence, it is likely that the cv is a service provided by the csp, or that some
of the dependencies are provided by the csp. We imagine a scenario in which
only a few security officers have the power to change the rulesets used on these
cvs, preventing the malicious insider from our attacker model to pose a threat.
On the other hand, the cv could also be run by another entity who has

sufficient insight in the software used by the csp. It is conceivable that a
company behind a cv signs a nda with the csp to audit the proprietary cloud
software. To guarantee the cv’s independence, it would be recommendable that
the cv is funded by the cloud consumer or a consortium of cloud consumers.

58

6. Implementation

The ideas presented in this thesis have been translated to a functional imple-
mentation based on the Xen hypervisor. In this chapter we discuss two main
topics. First, we first briefly name and describe the components involved in this
implementation. Second, we describe the steps involved in bootstrapping the
caas design.

6.1. Components

The implementation involves the extension and modification of the Xen hyper-
visor at different levels. While one important consideration for this thesis is
that readers should be able to reproduce the results, a detailed discussion of
all the components is not necessary for understanding the contributions of this
thesis. Therefore, in the current section the components are only identified and
briefly introduced, while a detailed discussion of all the components is given in
appendix B. Figure 6.1 shows an overview of the components that comprise the
implementation. We briefly review each component.

1 Data structures. The evm (vm in encrypted form) and vmcb (essential
metadata) data structures are recurring throughout the implementation.
Since the decisions of what to encrypt and how plays a key role in satisfy-
ing the requirements, these data structures warrant a deeper discussion.
(Appendix B.2.)

2 Access control. The design involves a separation of duties between dom0
and domt using access control. Both domains have a subset of hypercalls
that they are allowed to use (e.g., dom0 can still set the system clock, but
cannot introspect domains anymore). (Appendix B.3.)

3 Virtual filesystem bridge. A virtual filesystem bridge between dom0 and
domt through which domt can read files from dom0 as if it were reading
these from its own disk. This bridge is used by the domain builder as well
as the tpm management. (Appendix B.4.)

59

6. Implementation

Hypervisor tpm

dom0
Linux

domt
Mini-os

domc
Mini-os

domu
Linux

Boot by
hypervisor

5

xl library xl library
4

vfs

3

tpm
driver

6

Hypercall
access control

2

Pass-
through

7

consumer

evmvmcb

prepare vm

1

8

Figure 6.1: Overview of the components to be discussed in this chapter, with an
emphasis on highlighting the components, rather than giving a chronological
overview of the caas architecture.

4 Porting domain building code. The domain building code (the so-called
Libxl) was ported to mini-os. (The Libxl in the dom0 will forward any
requests that it cannot perform itself anymore to the libxl in domt.)
(Appendix B.5.)

5 Direct booting. The trusted domain builder is directly booted by hypervisor
after which dom0 and domt must discover each other. (Appendix B.6.)

6 A tpm driver for mini-os. The domt includes logic for exclusively
communicating with the tpm. (Appendix B.7.)

7 Passthrough encryption. A passthrough encryption is set up between
domc and domu, which involved both (i) creating a back-end driver and
(ii) creating the encryption. (Appendix B.8.)

8 Service tools. User tools help in deploying a vm to the cloud by the cloud
consumer. In particular, a plain vm must be split into the aforementioned
data structures. (Appendix B.10.)

60

6. Implementation

6.2. CaaS bootstrapping

In this section, we describe the process of bootstrapping our design. We only
discuss the paravirtualized mode of Xen, omitting the hvm mode (though
porting concepts such as passthrough encryption to hvm is possible).

Introduced terminology. We briefly list the components that will be discussed
in this section, notwithstanding that most of these have already been introduced
in either the background chapter or the previous section.

• Domt: trusted domain builder which also has exclusive access to the
tpm. Underlying kernel: mini-os.

• Domc: cryptographic assistance domain which provides passthrough
encryption and a vtpm. Underlying kernel: mini-os.

• Tboot: a bootloader which can install a drtm (cf. chapter 2, p. 20).

• Pv-tgrub: a modification of pv-grub (cf. appendix A.1) which cannot
only boot vms but also has the ability to extend measurements to a vtpm.

• Templates: a template is defined here to be a generic vm image which can
be instantiated multiple times for different consumers (i.e., no consumer-
specific data is part of the template itself).
The only templates which we are considering in this work are helper vms,
instantiated only to serve a specific task. Such a helper vm template
should be a minimal (i.e., no disk needs to be attached) vm image which
can be run on Xen in pv mode. In practice, this means that these
templates are mini-os based kernels since these come stripped down with
all required functionality statically compiled in.

6.2.1. Initialization

This subsection exhibits the caas steps which are only needed once after
powering on, i.e., the initialization steps.

Start of day (Fig. 6.2)

1 After powering on and initializing, the bootloader is started. Because our
design uses a drtm, there are no restrictions on the type of bootloader.

61

6. Implementation

Xen hypervisor

tboot (txt)

Bootloader

Hardware (bios) tpm

1

2

4

3
·tboot
·Xen
·domt

communication
measurement
instantiation

Figure 6.2: The hypervisor is booted via several intermediate steps, being
measured in the process.

2 The bootloader boots tboot with (i) the Xen hypervisor, (ii) dom0 kernel
and (iii) domt kernel as additional modules.
Tboot, by utilizing txt to install a drtm, marks the beginning of the use
of the tpm in our design. This txt call ensures that the tboot binary is
extended into a pcr which can only be extended by a txt instruction.

3 Once tboot is booted, it will measure its policy file. Its policy file will
instruct it to measure the modules which are part of the tcb, namely the
Xen hypervisor and domt kernel. Since dom0 doesn’t belong to the tcb,
it will be extended into an unused pcr.

4 Finally, control is passed to the Xen hypervisor.

Work domains (Fig. 6.3)

5 The Xen hypervisor boots the two domains that are required to start
consumer vms. The first is the familiar dom0, stripped of certain privileged
capabilities, while the second is domt, a small mini-os based helper
domain.

6 Domt will receive two templates from dom0.
1. The first template is the domc template, which is only the program

logic without any keys; consumer keys will be injected later on.
2. The second template is the pv-tgrub template, which is needed to

boot the consumer’s vm in a secure manner.

62

6. Implementation

Xen hypervisor

Hardware tpm

dom0

disk/net backend

Xenstore

5

domt

domain builder

hw tpm driver

caas control

5

templates:
·domc
·pv-tgrub

6

extend 7

Figure 6.3: The hypervisor boots dom0 and domt. Dom0 retrieves the
templates domc and pv-tgrub from local (or remote) disk and passes these
to domt who measures and caches them.

Since these templates are the same for all users, this loading needs to be
done only once. Nevertheless, it is conceivable that the csp might roll out
updated versions of either template, extending the newer version to the
tpm (as explained in the next step).

7 The templates are part of the tcb, therefore they are measured by domt,
which involves extending their hashes to the tpm. The templates remain
cached in domt’s memory so that they can be directly fed to the domain
builder stages later on.
At this point, the tpm contains measurements of tboot, Xen, domt, domc
and pv-tgrub. This corresponds to the tcb components of the design,
and are exactly the measurements which are relevant for the certified
binding key.

State (Fig. 6.4)

8 In-between consecutive reboots of the machine, domt’s state is securely
stored and reloaded. The state is encrypted and also the current value
of the tpm counter is included so that rollbacks can be detected. Also
considered part of the state is the private key blob of the tpm key.

63

6. Implementation

Xen hypervisor

Hardware tpm

dom0

disk/net backend

Xenstore

consumer
11

domt

domain builder

hw tpm driver

caas control

state8

unseal
9

create
key

10

pub
key

11

Figure 6.4: Dom0 loads the state and decrypts it using the tpm. Furthermore,
a binding keypair is generated if none is found. If a key is generated, the
public key is exported.

This step will be skipped if no state exists.1

9 The 〈TPM_〉Unseal operation will decrypt the blob if the pcrs are in the
correct state. After unsealing, the domt will check that its expected tpm
counter value matches the value found in the tpm, otherwise it will be
rejected as a replay attack.

10 If no key exists, a new non-migratable binding key is generated as well as
a certificate over the key. This key is bound to the current software state,
i.e., the values in the pcrs.

11 If a new key has been generated (or if dom0 lost the previous copy of the
public key) then the public key of the tpms key is exported. This key
reaches the cloud consumer through dom0.

1If the malicious insider removes these then a new key will be generated by domt. The
result will be that all currently assigned vms are invalidated, i.e. only a loss of availability.

64

6. Implementation

Xen hypervisor

Hardware tpm

dom0

disk/net backend

Xenstore

consumer
12

domt

domain builder

hw tpm driver

caas control

templates

vmcbcreate vm
operation

12

unbind 13

Figure 6.5: When starting a vm, dom0 passes the settings from the domain
configuration file to domt together with an encrypted blob containing meta-
data: the vmcb. The blob is unbound by domt and is dependent on a correct
state in the pcrs.

6.2.2. Starting a VM

At this point, the configuration has finished initializing. This means that both
the work domains are set-up and the tpm pcrs are in the state corresponding
to the software running. The domt is waiting for commands from dom0.
When and which commands dom0 will issue is dependent on the cloud

management software. This can be a proprietary product or one of the various
open source approaches such as OpenStack or CloudStack [OS; CS]. For this
thesis, a discussion of cloud management software is out of scope; we will instead
assume an administrator issues commands via the Xen toolstack.

Command (Fig. 6.5)

12 The Xen toolstack has received a command to create a vm from the
administrator. We assume the consumer has delivered its vm to dom0 or
it is reachable via network by dom0.
Domt receives from dom0 the Xen details for the creation of this vm.
This includes essentials such as the amount of ram, number of virtual
cpus (vcpus), network cards, and the location of disks. Additionally, it
receives an important blob of encrypted data called the vmcb. This vmcb
encapsulates various vital data such as checksums and the decryption key

65

6. Implementation

Xen hypervisor

Hardware tpm

dom0

disk/net backend

Xenstore

domt

domain builder

hw tpm driver

caas control

domc

vtpm

passthrough
encryption

csinfo

pv-tgrub

vm

domu

14

15

15

Figure 6.6: Domt builds the domc and domu domains using the cached
templates. The core information from the decrypted vmcb is injected into
the domc as csinfo. The domu is started with a bootloader which chain
loads the actual vm.

for the vm image, used in the passthrough encryption (cf. appendix B.2
for details). This blob can only be decrypted by the tpm.

13 The domt proceeds to request the physical tpm to decrypt the vmcb.
This is achieved using the 〈TPM_〉Unbind operation. In this operation, the
physical tpm will first verify whether the current measured configuration
is in the stipulated state which the decryption key requires. If the prereq-
uisites are satisfied, the tpm will decrypt the blob and return a decrypted
vmcb to domt.

Building (Fig. 6.6)

Domt now has all the information needed to build the cloud consumer’s two
domains. However, domu will not be built directly; instead a pv-tgrub is
booted which later chain loads the real domu.

14 The domain builder sets up the domu with the given settings by the
administrator (i.e., the ram size, number of vcpus, etc.) It does not,

66

6. Implementation

however, place the domu kernel to be ran into memory; instead, the kernel
from the pv-tgrub template is placed there, which has the sole purpose
of chainloading the real kernel.
The domc domain is set-up using predefined values for the ram and vcpus
since these requirements are homogeneous across all the domcs. As block
device(s) for domc, the consumer’s encrypted vm image is attached.2

The domc receives its payload with user-specific information from domt
during domain construction. This information, which we refer to as caas-
info (csinfo), contains the key for the passthrough encryption as well as
the non-volatile memory of the vtpm.

15 The domc and domu are now both in a running state. The domc, as
part of its responsibilities, connects to the block device offered by dom0
and offers a passthrough block device to the domu. Inside the domu the
pv-tgrub is in charge and mounts this passthrough block device.
At this point, a normal pv-grub setup would chain-load the domu kernel
and be finished. However, our bootloader takes an additional step before
chain-loading. This step by the bootloader — which is the reason that
our implementation is called a pv trusted grub — is to extend the hash
digests of the loaded domu kernel to the vtpm. This operation sets up
the vtpm for functioning as an srtm for the domu.

Booting (Fig. 6.7)

16 The only essential change that is taking place in this step is that domu is
now booting the consumer-provided domu kernel. This kernel will connect
to the passthrough device offered by domc, just like the pv-tgrub did
before. At this point domu can also connect to any devices offered by
dom0 which could be devices for which no passthrough encryption is
needed, such as nics or disks which contain public data and require no
confidentiality or integrity protection.
An important functionality at this point is the ability for the domu to
utilize non-migratable hvks stored in the vtpm. These secrets have been
pre-loaded by the consumer and were stored in the vmcb, which was later
injected into domc as part of the csinfo. These keys can now be used by
the domu without the risk of the keys ever leaking out of the vtpm when

2The vmcb contains info relating to the primary device; domt will assure that booting
happens from this disk. Other disks may be present; the caas design does not rule out the
use of unencrypted disks next to encrypted disks.

67

6. Implementation

Xen hypervisor

Hardware tpm

dom0

disk/net backend

Xenstore

domt

domain builder

hw tpm driver

caas control
domc

vtpm

passthrough
encryption

disk/net frontend

tpm stack (tss)

domu

16

Figure 6.7: Domu utilizes the virtual devices offered by domc. For the
passthrough devices, domc applies encryption and forwards requests to dom0.
Additionally, regular devices from dom0 can still be used by domu (not
depicted).

the domu is compromised by an outside attacker. An example scenario
is one where the domu will treat the vtpm as an pkcs#11 interface for
creating certificates.
This is of great importance for req. R1, because it means that hvks can
be guarded even in the face of successful external attackers.

68

7. Evaluations

In this chapter, various aspects of our proposed architecture such as lines of
code (loc) and passthrough performance are investigated.

7.1. Magnitude of the TCB

In Fig. 7.1, a tcb breakdown of components for the caas architecture is shown.
The bulk of the loc is taken up by Newlib, and although we already excluded
some parts of Newlib which are not used,1 this process could be taken steps
further. With respect to loc, the caas approach currently does not match up
to other minimal-tcb approaches, for instance:

• Colp et al. claim only 13.5 kloc for their domain builder in the Xoar
design [Col+11];

• Zhang et al. claim that their Cloudvisor comprises only 5.5 kloc [Zha+11a];

• Steinberg et al. claim only 36 kloc for the nova microhypervisor [SK10].

However, to achieve the smallest tcb is not the focus of this thesis. Moreover,
the tcb as an absolute indicator of security is rather superficial for our design.
In our case, the security would benefit the most from hardening the code in
the domain builder, perhaps even by adding some lines to the tcb for extra
bounds checking, rather than trimming down Newlib to a bare minimum.
In addition, we remark that our solution is the only design that actually

implements a trusted computing layer. A small tcb is only of limited benefit if
there is no guarantee that this minimal tcb software is actually the software
being executed. In either case, when comparing our solution with the status
quo, which includes dom0 in the tcb, the improvement is still significant: the
removal of the dom0 kernel from the tcb frees 7.6 million lines of code [Col+11;
Zha+11a].

1We ignore the math library and the Unicode conversion library (iconv) for Newlib.

69

7. Evaluations

XenNew
libLibx

c
Mini-o

s
Tboo

t
Libx

l
Domc

Domt

104

105

283k

169k

20k20k
14k

5.7k

3.3k3.1k

Lo
c

(lo
g 1

0)

Figure 7.1: Overview of the tcb components and the respective lines of code
in the caas architecture. The caas architecture adds roughly 230 kloc onto
the Xen hypervisor, resulting in a grand total of 520 kloc. (Counted using
Sloccount [SL].)

70

7. Evaluations

243 hy-
percalls

Dom0:
71%

Unprivileged:
29%

(a) Vanilla Xen.

243 hy-
percalls

Dom0: 15%

Shared: 5%

Domt: 36%
Removed:

14%

Unprivileged:
29%

(b) Caas Xen.
Figure 7.2: A comparison of the distribution of all Xen (sub-)hypercalls before
and after disaggregation based on our caas requirements. Hypercalls with
both an unprivileged and a privileged version are only counted once, and
listed as a privileged call.

7.2. Access control

As discussed earlier, in order to provide better protection against the malicious
insider we curtailed the power of the management domain. The approach
we took, was to write a custom Xen security module (xsm) module (cf. ap-
pendix B.3). Recall that we assigned to dom0 and domt distinct responsibilities,
and used these responsibilities in reviewing all the hypercalls (appendix F).

As shown in Fig. 7.2, we greatly reduced the number of privileged hypercalls
accessible by the management domain (and therefore, by a cloud administrator).
All of the remaining privileged hypercalls available to the management domain
relate directly to the set of responsibilities assigned to dom0, e.g., setting the
system clock,2 domain rebooting, etc. Moreover, we removed debugging and
tracing hypercalls since these are not needed in a production environment.

In summary, this xsm module is successful in curbing the number of hypercalls
available to the malicious insider adversary. Moreover, if the privileged domains
are segregated even further (e.g., as proposed by Colp et al. [Col+11]), then
Fig. 7.2b will show further segregation, too.

2We ignore the possibility of an adversary meddling with cryptographic protocols by
changing the system clock.

71

7. Evaluations

Characteristic Value
Disk Western Digital WD5000AAKS - 75V0A0
Processor Intel quadcore i7 with 3.2 GHz, 64-bits cores
ram 2048 mib (dom0) / 128 mib (domc) / 256 mib (domu)

Table 7.1: Properties of the Dell Optiplex 990 benchmark machine.

7.3. Passthrough encryption

As explained earlier, we implemented a passthrough cryptographic device. The
cryptographic scheme we used for this is also supported in native Linux by the
dm-crypt kernel driver (see appendix B.8.1 for details). This makes it possible
to compare two scenarios with each other, namely

1. the vanilla scenario, i.e., a domu communicating with dom0 without an
interposing domc domain, in both unencrypted mode as well as with a
dm-crypt protected filesystem in domu; and

2. the passthrough scenario, which uses an interposing domc in both a simple
forwarding mode or in forwarding mode with encryption.

We took bandwidth measurements using the fio tool [FI] in the domu. For
each of the aforementioned four combinations, measurements were taken over 12
distinct block sizes with each read or write run lasting 10 minutes. We disabled
all buffering on the domu side (important for reading) as well as explicitly
performed only synchronous i/o (which affects writing). Clearly, these are not
everyday settings, but they serve to make the experiments less biased. Moreover,
we execute random i/o tests only, which is necessary to prevent the harddisk
i/o buffers from playing a role.3 In Table 7.1, we list the properties of our
testing machine.

3A completely unbuffered experiment is difficult to guarantee. It requires further code
analysis to determine whether no buffering or reordering takes place in the path through the
ring buffers and the dom0 block device subsystem.

72

7. Evaluations

7.3.1. Discussion of results

We briefly discuss the findings exhibited in figures 7.3 to 7.5.

• Overhead of passthrough disk. In Fig. 7.3, we show the relative overhead
that our domc solution incurs. With a smaller block size, more switching
has to occur between front-ends and back-ends, and the overhead incurred
by our domc becomes more profound.
The significant differences seen between the read and write is a result from
the writing being slower than reading (see next graph) and the overhead
thus being a relatively smaller contributing factor.

• Inspection of spread of measurements. in Fig. 7.4, we highlighted a section
of the plots in detail. This scatter plot gives an insight in what the
spreading looks like for a typical measurement sample. The writing
performance had more variance and scored less than reading for the same
parameters; this is a behavior we saw across all measurement samples.
This seems to correspond with the specifications of our harddisk, which
states a higher latency for writing than for reading.4 In either case, the
domc dampens the variance somewhat, which is an artifact of the extra
overhead.

• Overhead of encryption. In the previous two plots we only showed the plots
corresponding to the unencrypted path. Therefore, in Fig. 7.5, we show
the relative overhead that encryption incurs. The vanilla scenario uses
the Linux dm-crypt kernel driver, while the passthrough device uses our
custom encryption. The graph indicates that the overhead of encryption
plays only a very minor role. The regression line for the writing under
vanilla conditions shows a nonconforming pattern, but this is mostly the
cause of a single outlier. This by itself seems at least partially a byproduct
of the higher variance shown in writing, which is dampened in the domc
scenario.

For figures 7.3 and 7.5, the definition of the relative difference is, with
operation O ∈ (read,write) and mean referring to data bandwidth sample
mean:

Overhead % = mean(Ovanilla)−mean(Opassthrough)
mean(Ovanilla)

× 100%

48.9ms for reading, and 10.9ms for writing [WD].

73

7. Evaluations

7.3.2. Measurement conclusions

Our passthrough block device shows overhead performance values ranging from
mediocre to acceptable depending on the block size. It is not easy to say which
block size is the closest to reality, but most likely it is somewhere in the middle.
In any event, it is a fact that os kernels will combine i/o requests, as well as
pre-fetch disk sectors and store these in ram in anticipation of further reads.
Therefore, i/o requests with block sizes as small as 512 bytes will be very rare.

Nonetheless, performance was never a design goal when developing the mini-os
block back-end driver, on the contrary, stability and flexibility were the primary
objectives. In that respect, the design goals were met since the passthrough
device remained stable under all experiments. Moreover, the flexible design of
parsing all requests (instead of just copying them from one ring buffer to the
next) allows for new use cases in the future, for instance, a block device which
is not backed by a dom0 disk but instead by a ramdisk or by a network-based
disk.

74

Read Write

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0%

20%

40%

60%

80%
N

o encryption

512b 4k 8k 16k 32k 64k 256k 512k 1m 4m 8m 16m 512b 4k 8k 16k 32k 64k 256k 512k 1m 4m 8m 16m
Block size (b)

re
la

tiv
e

di
ffe

re
nc

e
(p

er
c.

)

Figure 7.3: Plot of relative overhead of running in passthrough mode, as opposed to vanilla. The shaded area is
the 95% confidence interval.

No encryption

●

●

●

●
●

●●
●

●

●●●
●
●

●

●●
●
●

●

●
●

●
●

●

●●
●●

●

●

●●
●

●

●
●

●

●

●
●●●

●

●
●

●●

●●
●

●
●●
●

●

●
●

●

●

●
●
●
●
●
●●
●
●●●

●

●

●
●●●
●

●

●

●

●
●
●●
●●
●

●

●
●

●
●

●●
●

●
●●●●
●

●
●
●

●

●●
●

●
●

●
●●

●

●●
●●●

●●
●
●
●
●

●●

●
●

●

●

●

●

●●

●
●

●●●
●
●

●

●

●

●

●

●
●●●●

●
●

●

●●●●
●

●

●

●
●
●

●
●
●●●
●
●
●
●

●

●
●

●
●
●
●●
●

●

●

●
●
●

●
●

●
●

●
●●

●●

●

●

●
●
●●
●

●

●
●
●
●

●

●

●

●
●

●●
●

●
●

●

●

●

●●

●
●●
●
●
●
●

●●●

●

●●

●●●

●
●

●
●
●

●●

●

●
●●●
●

●

●●

●●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●●

●
●
●●●
●●
●
●
●
●

●
●
●

●

●

●●
●

●

●
●

●
●

●

●●

●●
●●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●●
●
●
●
●

●

●
●
●

●

●
●
●
●
●●
●

●

●●●

●

●

●

●

●
●
●●
●
●●

●

●
●●●

●

●

●
●

●●●

●
●●
●●●

●
●●●●
●
●

●●●
●
●●
●
●●

●●

●
●●
●
●
●

●
●

●

●

●

●●
●
●●
●

●
●

●

●

●

●

●●

●
●
●

●
●●
●

●●

●

●

●

●●

●

●

●●
●●●●
●
●

●●
●
●
●●●

●
●

●

●

●
●●
●

●

●

●
●●

●

●
●
●●●●
●
●

●

●

●

●

●

●

●
●
●

●

●

●●
●●
●

●

●

●●
●

●
●

●●

●
●
●●●
●

●

●
●
●

●

●

●

●●●

●

●●

●●

●

●
●
●●

●●

●

●

●
●

●
●
●

●

●
●●
●
●
●
●
●●
●●
●
●

●

●

●●

●●

●

●

●

●

●

●

●
●●●
●●

●
●●

●

●
●
●

●●
●

●

●

●●

●●

●

●

●
●
●

●
●

●●

●

●●

●
●●
●

●

●

●

●

●

●●●
●●
●

●
●●

●

●●

●

●●

●●●

●
●●●

●
●

●

●
●●

●
●

●

●

●●●

●

●
●
●●
●

●

●

●

●
●●

●
●

●●
●

●●●
●
●

●

●
●

●

●
●

●

●●

●

●

●

●
●
●

●

●

●
●

●●●

●

●

●

●

●

●●●●
●

●
●
●

●

●

●●

●

●

●●
●

●

●

●
●

●
●

●
●●●
●

●●
●

●●●

●

●●
●●

●

●●
●●
●●

●
●

●

●

●
●
●

●

●●●●●

●

●
●

●

●

●

●

●
●●
●

●

●

●
●

●
●
●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●●●
●
●

●

●●

●
●

●
●●

●
●●

●
●
●●●●
●

●●
●●

●

●

●
●
●●
●
●

●

●
●

●

●●

●

●

●

●●●
●
●
●
●●●●●
●

●
●●

●●

●●
●

●

●
●
●
●

●

●

●
●●

●
●●

●

●
●●

●●

●●
●
●●●

●

●
●
●●

●

●●

●

●●
●
●

●

●

●

●

●

●

●
●

●
●
●

●
●

●

●●●●
●●●
●
●●
●

●

●
●
●

●●

●●
●
●

●
●

●

●
●

●
●
●
●

●
●●●●

●

●
●●●

●

●
●

●

●
●

●

●

●●

●

●●
●

●
●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●
●●●

●●

●

●

●●

●

●

●
●
●

●

●
●

●●
●
●
●

●

●●
●●
●

●

●
●
●
●

●

●

●

●

●
●

●●
●●●
●●

●
●
●●●

●

●
●

●

●

●●

●
●
●

●

●●●

●
●●

●

●

●
●

●

●
●●
●●
●

●●

●●
●●

●●●●●●●
●
●●
●●●
●
●
●
●

●
●

●
●

●

●
●●●●●
●
●
●

●
●
●

●
●
●
●●
●
●
●

●●
●

●
●

●●

●

●●
●

●

●

●

●
●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●●

●

●●

●

●●●

●

●

●

●
●

●

●●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●●

●●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●
●●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●●

●
●

●●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●
●

●
●

●

●

●●

●

●●

●●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●
●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●
●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

20

40

60

20

40

60

R
ead

W
rite

0 s 3.3m 6.7m 10m
Time (s)

B
an

dw
id

th
 (

M
B

/s
)

type

● Vanilla

Passthrough

Figure 7.4: Close-up inspection scatter plot with a 4 mib block size.

Read Write

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

−5%

0%

5%

10%

−5%

0%

5%

10%

V
anilla

P
assthrough

512b 4k 8k 16k 32k 64k 256k 512k 1m 4m 8m 16m 512b 4k 8k 16k 32k 64k 256k 512k 1m 4m 8m 16m
Block size (b)

re
la

tiv
e

di
ffe

re
nc

e
(p

er
c.

)

Figure 7.5: Plot of relative overhead of running with encryption, as opposed to without. The shaded area is the
95% confidence interval.

7. Evaluations

7.4. Experiments in the public cloud

The domc relies on modifications to the hypervisor and dom0 from a security
perspective (i.e., protection against introspection as well as having guarantees
using tc technology) and a functional perspective (in vanilla Xen, only dom0
can offer back-end devices to other domains). However, the latter restriction
can be circumvented if the domu is modified.

Testing with the domc in the public cloud is for the most part an interesting
experiment. However, it is also more than that, since a domc in the public
cloud is a step toward satisfying requirement R1 (the protection of hvks) —
namely, even if the domu is breached, an external attacker does not gain access
to the domc domain.
In the Amazon ec2 cloud we performed the following steps. Because we

cannot write to the normal paths in the Xenstore (only dom0 can do this), we
need to work around this, and both domains must first share a path that they
both can write to with the other party.

1. Start n vms in a single request via the Amazon web services (aws) api.
Typically, this will give at least one pair of co-resident vms. In our
experience, n = 20 was a good value. Each run will cost for each vm an
hour worth of computing time, though one run is typically enough.

2. For each launched vm, heuristics are used to determine co-residence.
Various heuristics are possible, for example checking the first network
hop [Ris+09], and comparing domain id numbers (instances differing only
one value in their id are typically on the same machine). These checks
are fast and efficient and useful in weeding out the many vms which are
definitely not co-resident.
However, both these approaches generate false positives, and these need
to be filtered further. The only conclusive heuristic is to test if both can
access a common path in the Xenstore. Since there exist no common paths
in the Xenstore to which both domains can write, one domain shares a
path under its own subtree5 world-readable, or colloquially, it “places a
hook.”
The other domain tries to access this path, i.e. “search for a hook.” It
can do this by scanning all domain ids until it finds a domain which has
shared the respective path, or it can directly look at a suspected domain
id from the previous heuristic.

5More precisely, the data field is the only path for which this is possible.

78

7. Evaluations

Figure 7.6: Example domc output on ec2.

3. Given two co-resident vms, both will need to relocate their respective front-
end and back-end trees in the Xenstore to an alternative path because
the default paths lack the proper permissions. The approach is the same
as in the heuristic used in the previous step, by setting the world-readable
(and writable) flag on a specific path which satisfies the requirements.
On the first vm, a modified Linux kernel is uploaded and the machine
is rebooted. This kernel has been modified to “place the hook”. On the
second vm, a modified domc payload is uploaded and the vm is then
rebooted. This modified domc will scan for the hook, and if it finds it,
the back-end will announce its device to the front-end and it appears in
domu as a new disk.

4. Now that the connection is set up, the fde is applied transparently by
domc on any data sent by domu. In Fig. 7.6 an example is shown how
that after these steps, it is possible to view the domc debug output via
the aws interface.

79

8. Future work

Extending DomC

The domc is a flexible assistance domain which can be expanded to suit the
needs of a particular use case. For instance, a system which stores personal
health records (phrs) is an example of a system which can benefit from the
caas design [Den+12]. If the caas is used in such a healthcare environment, a
secure auditing component could be added to domc. Moreover, such a tool
could benefit from the synergy with the hvks by not only recording data, but
also returning audit logs signed with an hvk for authenticity.

Another use case is when we take trusted virtual domains (tvds) into account.
Tvds are an established design in which a node can only join the trusted domain
if the node is in a trusted state [Cat+10].

In our design, the domc could very easily be extended such that access to the
passthrough devices is prohibited if the state in the vtpm does not correspond
with the defined tvd policy. In fact, the passthrough devices would not include
only encrypted disk, but also a passthrough network device which automatically
connects to a virtual private network.

Hardening Mini-OS

We have made extensive use of mini-os in order to reduce the tcb to a minimum.
By doing so, we have placed critical components in a mini-os environment.
While these components check and sanitize the input received from the untrusted
dom0 source, in the light of the established security doctrine of multiple lines
of defense, additional security measures in mini-os would be commendable.

Currently, mini-os has no additional security features as for instance found in
commodity kernels such as Windows or Linux. The memory layout of mini-os
is simple. We would suggest the following improvements.

• The mini-os stacks for each thread reside directly after each other, making
it dangerously simple to overflow the stack and corrupt data. We propose
an intermediate page (which is not mapped to a physical page) placed

80

8. Future work

between the thread stacks so that a page fault is generated when a stack
is overflowing.

• The principle of address space layout randomization (aslr) and stack
canaries have been extensively studied for commodity operating systems
such as Linux and Windows, and could find suitable application on mini-os
as well.

In fact, by not having to take legacy software in account, mini-os has the
potential for drastic security improvements which might be considered too
stringent for a commodity os. Mini-os could be able to sport having both a
hardened environment and a tcb far smaller than those of commodity hardened
operating systems.

Final components

Not all components of the caas design were implemented in the limited time
available for this thesis. The pv-tgrub and vtpm still require implementation,
though for both, existing work is already available, and aligning this work with
the design from the architecture chapter should not prove too difficult. Lastly,
the migration of vms (req. R5) between nodes is supported by the caas design
(by communication between the domts), but not yet implemented.

81

9. Conclusions

We started this thesis with setting out a goal that recurs throughout all chapters.
We defined the high-level goal as enabling cloud consumers to securely deploy
and run their virtual machines in the cloud, while protecting their high-value
cryptographic credentials against external as well as internal attackers. During
the problem description, we defined this goal more clearly and translated it
to a set of requirements. In particular, we further specified the abstract goal
of securely deploying and running vms in the cloud, as security in face of a
powerful malicious insider. To achieve this, the hvks, which are deployed
securely and protected during runtime, play an invaluable role in enabling a
passthrough encryption which closes down the last attack channel available to
the malicious insider.
The design proposed in this thesis comprises many components in order to

fulfill the requirements. These components can be categorized into three pillars,
namely an improved access control in the hypervisor, a cryptographic assistance
domain, and a trusted domain builder. The confidentiality and integrity of the
cloud consumer’s assets is only guaranteed if all three pillars are setup and
working correctly.

While we see room for further improvement of our implementation, the es-
sential components which lend the design its security guarantees have been
implemented. Moreover, the implementation is one without significant reser-
vations — while many authors incorporate trusted computing in their designs
only by stating that their design should use tc to provide secure deployment,
our implementation goes one step further and implements the tc steps from the
encryption tool at the cloud consumer, up to unbinding at the trusted domain
builder.
In summary, the caas design presents a multifaceted approach towards

solving trust issues with cloud computing at the iaas level. While many of
the components in caas are not strictly unique to this thesis, the integration
and composition of these solutions does result in a synergy not yet presented
before. Indeed, the deployment of hvks in a secure environment in the cloud, as
well as a passthrough encryption which leverages these keys for a complete vm
protection, are not only immediately usable in the status quo, but also function
as a building block from which higher level solutions can directly benefit.

82

Appendix

83

A. Further introduction to Xen

In section 2.2, during the background information chapter, we introduced the
overall Xen architecture and briefly mentioned mini-os. In this appendix we take
a further look at Xen. In the first section we view Xen from an implementation
perspective, e.g., the libraries and tools involved. Then, in the second section
we review mini-os which is an important building block for the helper domains.

A.1. Xen components

In Fig. A.1 we outline the components1 which are used in the management
domain, dom0. This figure highlights the central role assigned to user space in
dom0 to perform the management tasks — when it comes to management tasks,
the dom0 kernel is merely forwarding commands to the hypervisor on behalf of
the user space tools. We briefly discuss the most important components shown.

Libxl. For easy management of the machine, the cloud administrator needs a
tool via which he or she can interface with the Xen components. As mentioned
previously, in Xen, this role is fulfilled by the Libxenlight (Libxl) library and
the accompanying xl command line tool.2

Domain building is a core task of Libxl. However, the range of commands the
administrator wishes to execute comprises much more than domain building
alone. Other commands supported by Libxl are domain (un)pausing, saving
and restoring, setting quotas, viewing currently running domains, and more.
These commands are not only callable with xl, but through Libxl they are
exposed to various other tools and libraries (e.g., cloud management software
to manage a large group servers).

1We do not claim that this is a complete overview of Xen components. For instance, we
do not show ballooning, transcendent memory, or user space device emulation. However, this
overview is sufficient for discussing the implementation.

2The etymology of Libxenlight is that it is a successor to the previous interface to Xen:
Xend and xm (the Xen daemon and “Xen master” tool). Some readers might be familiar with
these tools, though these are now deprecated.

84

A. Further introduction to Xen

LibxlQemu Xenstore

xl

Libxc

privcmdgnt{alloc,dev}
evtchn Xenbus

Backend
drivers

Kernel core
subsystem

Hypervisor

Xenbus

Frontend
drivers

user space

kernel space

hyper space

dom0 domu

i.e. grant tables,
event channels, in-
tertwined with kernel
interrupt handler etc.

Xenfs

Figure A.1: An overview focused on the user space Xen libraries living in
dom0, with kernel space and hyperspace drawn above them. This diagram
conveys that the management tools live in user space. The Xenfs is mounted
at /proc/xen through which kernel and user space communicate.

85

A. Further introduction to Xen

Pv-grub starts

Pv-grub’s mini-
os code opens

user’s primary disk

Pv-grub’s grub
payload reads mbr,

etc. from disk

Pv-grub replaces
itself with the kernel

found by grub

User’s vm runs

Figure A.2: The flowchart of booting a domu using pv-grub.

Libxc. The Libxl library itself partly defers responsibilities to another library:
libxencontrol (Libxc).3 The Libxc library is the user space library which wraps
around the hypercalls and does most of the low-level primitive operations
required by Libxl.
Therefore, it plays a key role in for instance the domain building process,

discussed in the next appendix. The caas design also makes use of the Libxc
in the helper domains which run mini-os. Fortunately, libxc has already been
ported to mini-os by Xen developers for use in the pv-grub project, and we
can build on this effort.

Xenfs. As can be seen in Fig. A.1, most of the management logic lives in user
space in dom0. This is an application of the principle of least privilege; i.e.,
only the most time critical components (e.g. disk back-ends) need to live in the
kernel space.4
The link between user space and kernel space is provided by the Xenfs

component. Xenfs is a virtual filesystem which is to be mounted at /proc/xen
and provides sockets and information for the Xenstore and Libxl to connect to.

Bootloaders. Normally, Xen expects to boot a kernel binary image directly,
not a virtual disk.5 However, from a management perspective, it is a hindrance
for cloud consumers to have to ask the csp to set up a new kernel image each
time they wish to update their kernel.

3Do not confuse this library with Libxl; they differ one letter.
4Not all back-ends are necessarily handled in the dom0 kernel. Slightly slower but more

flexible back-ends can be created in user space. For instance, the emulator Qemu is typically
used to back file-based virtual disks.

5In other words, if you take a snapshot of a partition, the hypervisor does not know how
to use it. What is needed, is the kernel image used for booting, typically only a few megabytes
in size.

86

A. Further introduction to Xen

Therefore, in order to empower users to have control over their own booted
kernel, Xen makes use of a modified version of the well known grub boot-
loader [GR]. The Xen modifications, branded as pv-grub6, work by first loading
the modified grub in the domu’s address space, which then replaces itself with
the real kernel the user is interested in.

In Fig. A.2 we exhibit the workflow of this enhanced grub. We remark that
the pv-grub bootloader tool is an example of a tool which leverages a mini-os
to be small and compact.

A.2. Mini-OS

Mini-os is a minimal kernel which is designed exclusively for Xen. The origins
of mini-os is as a proof-of-concept kernel to showcase the features of paravirtu-
alization on Xen [TD08]. However, besides being a showcase, various interesting
use cases for mini-os have been developed. Because mini-os contains no legacy
code like a commodity kernel, it has great potential for executing small and
isolated Xen specific tasks. However, that does not mean that mini-os is only
suitable for unprivileged tasks. On the contrary, by privileging mini-os, it can
in fact take over various specialized tasks from the large, generic dom0. The
advantages of mini-os are:

1. Smaller tcb than dom0 for equal tasks due the lack of native hardware
drivers, filesystem or system libraries. (However, the corollary is that
mini-os is not suited for every kind of task.)

2. Isolation from manual interference — mini-os has no concepts of users
or terminals, so there exists less room for a malicious insider to directly
interact with mini-os and cause mischief.

3. Because all code is statically compiled, the entire os is a single binary
and therefore easily measurable.7

These three advantages compelled us to use mini-os for our helper domains
domc and domt. While mini-os has distinct advantages, porting c programs
from a posix environment to a bare-metal kernel such as mini-os is a nontrivial

6Some readers might be familiar with the so-called pygrub system instead. This is the
preceding system, which used a deprecated design, and will not be discussed here.

7That is not to say that a Linux setup cannot be made static and that a mini-os cannot
be made dynamic. Linux can read a pre-packed filesystem from a ram disk, and mini-os can
pull in scripts via the block driver to feed to a statically compiled interpreter. These cases
will not be dealt with in this thesis.

87

A. Further introduction to Xen

task. Most c programs depend in the very the least on Libc,8 but generally
have much more dependencies. Without a Libc, mini-os will only run the most
simple programs. The naive solution, porting the Linux gnu Libc to mini-os,
would be complicated due the large size and dependencies on Linux specifics.

Therefore, the Newlib library [Joh+] has been ported to mini-os [TD08]. This
library is a minimal c library geared towards embedded systems. Hence, porting
to new environments such as mini-os is relatively painless. By leveraging newlib,
normal c programs can be ported to mini-os, granted they can be sufficiently
disentangled from any c libraries used besides of Libc.

8The Libc library provides all the basic c functions which programmers take for granted,
such as the string functions (strcpy and friends), memory functions (malloc and others), and
many more.

88

B. Implementation details

In this appendix we give a detailed discussion of how the components in our
implementation work. It is recommended to consult appendix A for a deeper
introduction to Xen in order to understand the technical topics in this chapter.
The structure of this chapter will be component oriented, in the order presented
in Fig. 6.1.
The implementation in this thesis is based on Xen version 4.1.2.

B.1. Overview

In Fig. B.1 we give an overview of how our modifications to the Xen management
libraries look in the overall picture. This only shows dom0 and domt, since
the domc plays no role in domain management. This figure shows that most
of our modifications and hooks live in dom0 user space, where they forward
functionality to domt.
In addition, our modifications and extensions to mini-os are exhibited in

Fig. B.2, showing the core mini-os components and our additions contained
in domc and domt. These components will be explained in the sections that
follow.

89

B. Implementation details

LibxlQemu Xenstore

xl

Libxc

Libxlc

Vfsd

Xenkicker

privcmdgnt{alloc,dev}
evtchn Xenbus

Backend
drivers

Kernel core
subsystem

Hypervisor

Vfs Libxlc

LibxlLibxc

Hypervisor

user space

kernel space

hyper space

dom0 domt

Figure B.1: An overview of the original management libraries from Fig. A.1
in gray together with the caas additions in black. In red, we highlighted the
dom0 privileged hypercalls which are now subjected (but weren’t in vanilla
Xen) to checks of access control by our caas security module.

90

B. Implementation details

native ported

Domt DomcCommon

Memory
mgt. Scheduler

Grant
tab. mgt.

Event
handler

Libc layer

Xenstore
interface

blkfront

netfront,
pcifront,...

tpm
interface

libxc newlib

vfs

Discovery xlc

caas tc
libxl

ported

sha,
hmac,
aes crypt blkback

vtpm

Mini-os

Figure B.2: Mini-os components, with the original components shown at the
bottom and our added components shown above it. The layering is only
conceptual, all code runs in the same address space and protection ring. For
brevity, we only highlighted the most important interactions using edges.

91

B. Implementation details

sector 1
s

sector 2
s

. . .
s

. . .
s

. . .
s

sector n
s

H(·)

H(·)

H(·) H(·)

. . .

.

H(·)

H(·) H(·)

vm virtual disk

evm:

s =
encrypt
with key s

Merkle tree:
H(·)= hash

Figure B.3: The E(vm) data structure (from now on, evm) is the virtual disk
encrypted with key s. A Merkle tree is derived from the evm by hashing
sectors and ordering these in a tree.

B.2. Data structures

In this appendix we discuss the two most important data structures which play
a role in our implementation.

Encrypted VM. In Fig. B.3 we exhibit how we apply a full disk encryption (fde)
scheme to secure the vm (the precise fde scheme follows later in appendix B.8.1).
The notion of a vm that the cloud consumer might have, is in fact simply a
filesystem on a virtual disk with n sectors. By applying encryption on each
sector of this virtual disk using key s, we get the data structure we refer to as
the encrypted virtual machine (evm).
We remark that the symmetric key s is not only used for encrypting the

filesystem but also for important pieces of metadata which also need to be
protected (discussed below). Hence, key s plays a central role in our data
structures. For maximum entropy, and considering that the key never needs to
be entered by the user, this key should be generated randomly by the cloud
consumer’s software the first time.

Merkle tree. For efficiency reasons, fde schemes are typically designed such
that decrypting a single sector does not depend on the decryption of other
sectors (although the position with respect to other sectors matter, i.e., swapping
will be detected).

This has no consequences for confidentiality as long as the block cipher is
sufficient and the fde scheme does not leak information. However, for integrity,

92

B. Implementation details

uuid &
Policy

Merkle
tree

Counter
value

vtpm-
nv

s

concatenated
Master
key s

k

Memory
blob

s

hmac
s

Merkle
tree

vtpm-
nv

Master
key s domc id domu id

vmcb:

s =
encrypt
with key s

csinfo:

Figure B.4: The vmcb data structure (which is provided to the domt by the
consumer), and the csinfo data structure (which is injected into the domc
later). Variable s is a randomly-generated symmetric key also used in evm
(cf. Fig. B.3) and k is the public binding key. As visible, s itself is encrypted
by k. For all encryption, padding and cbc are applied if necessary.

the implications are that any tampering with the ciphertext at a single position
will only scramble parts of the plaintext and not the complete filesystem. Such
tampering might go undetected with the user (violation of integrity of vm, R2).
Furthermore, by default such a scheme offers no protection against an adversary
rolling back certain blocks with older versions (freshness, R4).
Integrity protection using message authentication codes (macs) is a well

known approach in information security. Moreover, as identified by Yun et
al., it is inevitable that each block will have to be hashed in order to achieve
complete integrity protection of a disk — this cannot be reduced further [YSK09].
Therefore, we calculate macs of all the disk sectors and construct a hash tree
of these, i.e., a Merkle tree [Mer87]. In the upper part of Fig. B.3 an example
of such a Merkle tree is shown. After the construction of the Merkle tree is
complete, the encrypted virtual disk EVM is the first component of the tuple
that will be sent to the cloud later on. For the sake of integrity, the Merkle tree
much be protected as secure as the key s, though it suffices to store only the
topmost hash, since the tree can be rebuilt with only the topmost hash.

Metadata. Figure B.4 shows the virtual machine control blob (vmcb) structure.
The vmcb contains metadata regarding the vm which the consumer wants to
virtualize. The uuid is uniquely generated for this vm and is unencrypted to
ease administration for the csp.
The virtual tpm non-volatile memory (vtpm-nv) contains the non-volatile

memory of the consumer’s vtpm. By determining the contents of the vtpm-nv
beforehand, the consumer is able to secure high value keys under all circum-

93

B. Implementation details

stances (req. R1); even if the vm is compromised, the hvks remain secure.
The virtual counter value (cf. tc introduction, section 2.3) is the value the

virtual counter had at the time of vmcb update. The value will be initialized to
zero by the cloud consumer when creating the vmcb. The domt will maintain
a set of virtual counters indexed on the uuid of the vmcbs. This ensures that a
malicious insider cannot rollback the vmcb — nor the evm of which the Merkle
tree is a digest (req. R4).
The memory blob is an optional parameter and will not be used directly by

the cloud consumer. When Xen saves the execution state of a vm to disk, the
ram of the vm is an additional asset that needs to be protected with the same
requirements as the evm.

The hash-based message authentication code (hmac) glues all the properties
of the vmcb together and prevents individual properties from being rolled back
by a malicious insider (req. R4). The master key s will be encrypted using
an asymmetric key k, which refers to the certified binding key of the target
platform.
The csinfo shown in Fig. B.4 refers to the data which is injected into domc

during domain creation (cf. Fig. 6.6). The csinfo contain certain data from the
vmcb as well as two domain identifiers; by injecting these values in domc by a
trusted source (domt), domc cannot be tricked into offering the passthrough
encryption to the wrong domain by a malicious insider abusing the Xenstore
(req. R3, coupling of vm and hvks). We discuss this attack and its implications
in more detail in appendix E.

Figure B.5 exhibits the interaction between the entities when deploying a vm.
In the first phase, the consumer takes preparatory steps which are merely the
implementation steps of constructing the entities shown in Fig. B.4, namely the
evm and vmcb structures. Because domu is indirectly built (cf. Fig. 6.6), the
evm (variable d) stays in dom0 and only the vmcb (variable b) is transfered to
domt.

B.3. Deprivileged management domain

In the caas design, the system has stopped relying on dom0 for domain building,
and thus dom0 is evicted from the tcb. However, unless the hypervisor
is modified to reflect this, dom0 still has the privileges to execute attacks.
Therefore, it is critical that the hypervisor’s access control reflects the new
division of work between the dom0 and domt domains.
In vanilla Xen there exists by default a very basic access control, which is

nothing more than a boolean privileged versus unprivileged status flag. This

94

B. Implementation details

:consumer :dom0 :domt :tpm

d := FDE(d, s)
mcv := m ++c ++v
mcv := AES(mcv, s)

verify(PKBIND, CBIND)

s := 〈Tspi_〉Data_Bind(PKBIND, s)
h := HMAC(u ++mcv ++s, s)
b := u ++mcv ++s ++h

createVM(d, b)

createDomain(b, . . .)

〈TPM_〉LoadKey2(PKBIND, ESKBIND)

HBIND

〈TPM_〉Unbind(s, key=HBIND)

s

assert h⇐⇒ HMAC(. . . , s)
assert c⇐⇒ ReadVCounter(u)

create domain (cf. appendix B.5)

return code

return code

u: uuid s: symmetric master key
m: merkle tree h: hmac
c: counter value mcv: group of properties
v: vtpm-nv
d: vm disk b: vmcb

Figure B.5: The interactions between the entities for deploying a vm.
The ++ symbol indicates concatenation and an overline indicates a ciphertext.

95

B. Implementation details

suffices only for the most simple scenario in which there is one domain which
fulfills all of the privileged tasks. Fortunately, there already exist a more
expressive development in this area on which we can build.

B.3.1. The XSM framework

The xsm framework, also known as sHype, is a framework for writing security
modules for Xen [Sai+05]. The xsm framework design is an application of manda-
tory access control at hypervisor level. The discussion of mandatory access
control is out of scope as it is a large topic; however, its application here is
simple, it allows to express strict regulations which curb the free deployment
of vms more than what is possible in vanilla Xen. For instance, one might
desire a strict Chinese wall policy such that customers Alice and Bob are never
co-resident on a single machine. Another example is the desire to prevent
the vms from Alice and Charley to communicate with each other under any
circumstance.

The xsm framework is implemented as modifications to the hypervisor source
code. To allow for the expressiveness of aforementioned example policies, the
xsm framework adds many hooks throughout the hypervisor source code via
which a xsm security module can regulate the control to hypercalls.

Xen comes with two available implementations which hook into the xsm
framework: the access control module (acm) and Flask.

1. The acm framework, which appears unmaintained, is oriented at imple-
menting Chinese Wall or simple type enforcement policies, both limited
in expressiveness.

2. The Flask system borrows much from selinux. One compiles a policy
using a selinux policy compiler in which one describes how to act at all
the hook points. This policy is then compiled to a binary format which is
passed to the Xen hypervisor at boot time.
For each vm that is started, the vm configuration file will hold information
on which category the vm belongs to. For instance:
access_control = ["policy=,label=system_u:system_r:domU_t"]

Expresses that the booted domain is a pv guest.

B.3.2. The CaaS security module

Neither of the two distributed xsm plugins satisfied our needs. While acm is
limited in expressiveness, the Flask approach did not compile for us and did

96

B. Implementation details

not cover all the hooks we wanted.1 (Though if these problems did not exist,
Flask might have been a good candidate.) On the other hand, we were required
to make numerous changes to the xsm hooks as they were laid out by default.

• For example, many hooks would record the target of a certain hypercall,
but only a few hooks would record the invoking domain. This is a reflection
of the original design of xsm where it serves as an addition to the existing
privileged vs. unprivileged access control — i.e., it bluntly assumes the
invoker is dom0 for certain hypercalls. Hence, we expanded many xsm
hooks to allow for our disaggregation of dom0 privileges.

• Furthermore, not all hypercalls were fitted with xsm hooks.

As a result of these considerations, we decided to create our own xsm module
which we simply named the caas xsm (or security) module.

From one to two privileged domains. For our xsm module, we first asked
ourselves the question what the division of responsibilities between dom0 and
domt is. In vanilla Xen, dom0 is many different roles at the same time. However,
in our design we discern the following division of privileges.

• Dom0: disk and network emulation, vm management, platform configura-
tion (e.g., system clock, power management).

• Domt: domain building, controlling the tpm.

Our conclusion is that the situation is not black-and-white, rather, dom0 and
domt together share the privileged hypercalls (with the critical notion that, for
our requirements, domt exclusively controls the memory). With the assignment
of roles laid out, the next step was to investigate all the hypercalls found in the
Xen source code. The result of this large analysis is found in appendix F — for
each hypercall we analyzed under which responsibility the hypercall falls. In
summary, there are four categories:

1. hypercalls belonging to dom0;
2. hypercalls belonging to domt;
3. hypercalls assigned to both;
4. hypercalls assigned to neither.

1However, improvements seem to be in the pipeline for the upcoming Xen 4.2 release.

97

B. Implementation details

Finally, in the implementation step of our caas security module, we im-
plemented our security module using the xsm hooks. A detailed overview of
which xsm hooks we used is presented in appendix G. For each xsm hook, we
applied the category restriction defined in the assignment of hypercalls found
in Table F.1.

In our design, the caas security module is compiled into Xen and enabled at
all times. We remark that removing the module from the compilation will lead,
obviously, to a different hash of the Xen hypervisor, and thus be detected as
tampering by the appraising party.

Remarks regarding CaaS security module.

• Since domt is part of the tcb, we could have decided to make domt
omnipotent and give domt access to all available hypercalls. However,
this would not correspond with the principle of least privilege; moreover,
we clearly defined the responsibilities for domt, so it is sensible to restrict
domt to only those hypercalls that it needs to fulfill its duties.

• We removed a set of privileged hypercalls by assigning them to neither
dom0 nor domt. The removal of these hypercalls follows from the division
of responsibilities — for instance, we did not assign the responsibility of
“debugging vms” to any of the domains, hence, these hypercalls do not
need to be enabled in a production environment. The small set of shared
hypercalls are composed of overlapping hypercalls (e.g., unpausing a vm
is needed for dom0’s management taks as well as for the domain builder
in domt) or due to the innate nature of both work domains (e.g., writing
to the Xen debug console is desired for all helper domains, both dom0
and domt).

• Implementing all the xsm hooks in correspondence with how we assigned
the responsibilities is a considerable amount of work; in particular for
those hooks which are not yet in the form desired for expressing our policy
or for those hypercalls for which xsm hooks are vacant. Therefore, we
chose to restrict our implementation to only the current available hooks.
Notwithstanding that our caas security module can be improved, all the
dangerous hypercalls — such as those used for introspection — have been
curtailed properly in this implementation. For all intents and purposes,
the caas security module provides full security against the adversary from
the attacker model (section 3.1). Trial runs with our provisional caas
security module did not lead to any instabilities, however, we cannot rule

98

B. Implementation details

out the possibility that our hypercall and xsm analysis in appendices F
and G can be improved.

B.4. Virtual filesystem driver

For various components in domt, such as the domain builder and loading of
tc keys and blobs, it is necessary to read data from dom0 files. However, as
domt contains no filesystem drivers, adding these would bloat mini-os’ small
codebase. The compromise is to rely on the virtual filesystem (vfs) kernel
driver in the dom0, rather than a block device.

In Linux, the virtual filesystem (formerly called virtual filesystem switch) ties
together all the various filesystems the kernel can operate on. For instance, the
main partition is mounted on / and the proc filesystem on /proc. Regardless of
whether opening a file on /example or /proc/example, the kernel makes sure
that the request ends up at the correct filesystem driver.

As we know from the attacker model (section 3.1) availability is not considered.
This means that, as convenience, we can rely on reading files from dom0 as long
as we make the assumption that this data may be untrustworthy.
This observation has been made earlier by Murray et al. who made a vfs

back-end driver between their domb and dom0 [MMH08]. However, inquiry
revealed that their code was never upstreamed and that their patches do not
apply on a current version of Xen. Moreover, Thibault and Deegan also speak
of a project with a vfs split-driver [TD08], but also of this work we could find no
further details. Therefore, we implemented a complete vfs solution for mini-os
which provides transparant hooking of the i/o calls in mini-os.

B.4.1. The CaaS VFS bridge

As we exhibited in the Xen overview figure during the introduction (Fig. 2.4),
virtual devices in Xen typically have the form of a front-end and a back-end
communicating over shared memory. This paradigm is well suited for devices
with a strict defined interface. On the other hand, it is quite involved to write
such drivers, and creating a high performance vfs interface is not a core goal
of this thesis. Hence, we take a simpler route by using a hybrid approach which
uses the Xenstore for commands and grant tables for data transfer.

Our VFS bridge. The system calls that our vfs bridge implements (and
reroutes to dom0) are listed in Table B.1. This coverage is sufficient for (i)

99

B. Implementation details

System call Description
open Open a file descriptor
close Close a file descriptor
stat Get details on a given file
lseek Move the offset around in file descriptor
read Read from file descriptor
write Write to file descriptor
mmap Map parts of a given file directly into memory
majorminor Return major and minor numbers for a devicea

aEach Linux hardware device has been assigned a unique major minor
and minor number. The ported domain builder relies on this.

Table B.1: An overview of the small set of system calls that need to be available
in the vfs bridge.

loading vm images used in the domain builder, and (ii) for reading and writing
domt state and tpm keys.

In Fig. B.6 we present an example of how our vfs daemon approach operates.
An important point which can be seen here, is that domt treats dom0 as
untrusted. Moreover, for each i/o buffer of data in domt’s memory, a zeroed
bounce buffer is created of equal length. This is necessary because we can only
share complete pages with dom0 and we have no desire to expose unrelated
data to a potentially malicious dom0. In the next step, all the pages in the
bounce buffer are shared (since the grant table works at page-level), and each
grant reference (an integer) is then accumulated into a large list — which by
itself is in a page which is shared with dom0 as well.

Summary. For our implementation, we built a rudimentary but stable vfs
bridge between dom0 and domt which meets our functional requirements.
Although we did not perform measurements on this part, we can conclude from
the design that our approach is not the fastest attainable.
However, this was never the goal; from the outset, it was clear that domt

will only seldom need to perform disk i/o, and then a few milliseconds overhead
are negligible. On the other hand, by keeping the vfs interface simple, we
prevented creating exploitable coding errors.

100

B. Implementation details

buffer

bounce buffer

grefs map m

Xenstore

vfs module callerkernel

vfsd

Dom0 Domt

share gref(m)map gref(m)

writeret

write

ret

Figure B.6: Vfs daemon operations for a write call. On the domt side, a
component (e.g., domain builder) writes to a file. This call is handled by the
vfs handler, who creates a bounce buffer to which it duplicates the buffer.
The buffer is composed of several pages, and each of these pages is shared
using the grant table. All the grant references accumulate into a page, which
itself is again shared using the grant table. This grant reference is shared
through the Xenstore and expanded at dom0. The vfs daemon then executes
the system call on behalf of domt, returning the return value through the
Xenstore.

B.5. Domain builder port

As noted before, the domain building process in Xen comprises an intricate
number of steps. Among things, it is necessary to parse the kernel binary
blob, setup initial page tables, place any ramdisks, setup domain bookkeeping
metadata, and connect the Xenstore and Xenconsole to the new domain. Due
to the minimalistic nature of the Xen hypervisor, these tasks are for the most
part performed in dom0.
Moreover, these are not atomic operations. In other words, in one hypercall

the hypervisor is asked to allocate a memory range for the new domain, while

101

B. Implementation details

Libxl Libxl Libxc

dom0 domt

command line
or api call

hypercalls

do_domain_create

domain_create_new

domain_create_restore

. . .

Figure B.7: The break-up of libxl over an unprivileged dom0 and privileged
domt part during the domain builder process.

in another hypercall this memory range is mapped into the page tables of dom0,
in order that dom0 can write to this new domain’s memory. There is no single
hypercall that merges all the operations into one hypercall, and neither would
this be feasible due to the diverse operations that dom0 needs to perform (e.g.,
pv differs from hvm, during suspension dom0 needs to read the memory again,
etc.)

B.5.1. The CaaS domain builder

Our approach generally follows the solution as laid down by Murray et al. [MMH08],
though we had to create our solution from scratch.2 In this architecture, the
domain building process (which includes various sensitive privileged instruc-
tions) is moved to a separate domain builder domain who has read access to
the dom0 disk.
In our design, we consider a real-world scenario in which privileges are

divided between dom0 and domt and not fully assigned to either of these (cf.
appendix B.3). This implies that some privileged commands such as assigning
vm quotas and (un)pausing vms remain with dom0, and this needs to be
reflected in the design of the Libxl splitting.

2An inquiry with the authors learned us that their code had never been upstreamed and
based on a Xen version of a considerable time ago.

102

B. Implementation details

In Fig. B.7, it is exhibited how the Libxl is broken apart over a dom0 part
and a domt part. The domt part of Libxl relies on a Libxc which exclusively
lies in the domt. The functions shown in Fig. B.7 at which we break the build
process have been carefully chosen; the determination of where to break is under
influence of two opposing interests.

• On the one hand, one wishes to place as much code in the domt as
possible. By doing so, we can reduce the number of calls that need to be
made between dom0 and domt. However, more importantly, this would
ensures that we have sufficient context information available to determine
whether a call is to be allowed or not. This plays a key role because calls
to Libxc during the building process are scarcely distinguishable from calls
outside the building process, when they are used for malign introspection
instead.

• On the other hand, however, it is unnecessary to route functions for which
dom0 retains privileges (i.e., management related hypercalls) through
domt. Moreover, there are parts of the domain building code in Libxl
which are strictly dom0 related; for example, attaching to the output
console of the newly started domain makes no sense outside of dom0 and
would be complex to create in domt.
Furthermore, an important factor in our considerations is to make as little
changes to the build process as possible. The ‘break’ in the build process
should not necessitate additional rewriting of Libxl or Libxc code. Such
excessive refactoring risks breaking dependent behavior (i.e., migration
code) and makes it more difficult to rebase our code on newer versions of
Xen in the future.

In our approach, we use c preprocessor directives which check if we are
compiling Libxl for domt or for dom0 and then include only the relevant code.
By doing so, we are able to develop our caas solution on the code base of a
pristine Xen source tree with minimal rewriting.

Comparison of the break point. With the two opposing influences in mind,
we determined that the optimal breaking point is the location shown in Fig. B.7.

On the other hand, Murray et al. break the build process at a different
point, namely not in Libxl but in a function from Libxc [MMH08]. However,
the function they used, 〈xc_〉linux_build, is now deprecated in Xen due to
design changes [XML1]. Rolling back these Xen changes would require significant
rewriting of Libxl and Libxc and would have no prospect of ever being accepted

103

B. Implementation details

Hypervisor

dom0

Libxc

Libxl

Libxlcore

normal
cmds

domt

Libxc

Libxl

Libxlcore

priv.
cmds

xl

Figure B.8: Schematic overview of the xlcore communication channel. Domain
building calls initiated in dom0 are forwarded to domt.

upstream. Hence, the approach of Murray et al. was sensible at that time, but
is no longer applicable to a modern Xen version.

B.5.2. Inter-VM pipe

In networked environments, a ‘breaking line’ in processes is a well understood
problem, for which the remote procedure call (rpc) methodology is the stan-
dard solution. In analogy to inter-process communication, the term inter-vm
communication (ivmc) has been coined in literature for the communication
taking place between vms [MMH08].
In our implementation for ivmc between the management domain and the

trusted domain builder, we created a new library in dom0 to wrap those
functions which are now handled in domt. This library, which we called Libxlc
(Libxl-core) because it handles the core Libxl operations, is shown in Fig. B.8.
Observe that there are two Libxls and two Libxcs, either for normal or for
privileged commands.

The use of the Libxlcore communication channel operates in a manner similar
to how we handled the vfs daemon (appendix B.4). In fact, the Xenstore-based
communication channel (cf. vfs example in Fig. B.6) is again used, but with
sender and receiver swapped.

How the VFS underlies domain building. The vfs interface plays a funda-
mental role for the domain building process in domt. By allowing our Libxlc
library to forward ordinary build instructions (which inform the domain builder

104

B. Implementation details

where on dom0 to find the vm config file) to domt we do not need to modify
the domain building code.
The vfs code in domt is developed in such a way that it reroutes ordinary

posix file i/o to dom0. That is, if the code in in our mini-os port of Libxl
tries to access the file /etc/xen/example.cfg, in fact the underlying vfs code
is used to fetch the file from dom0 in a fashion completely transparent to the
calling code.3 Again, by not having to consider file i/o from a mini-os as
something different than in native Linux, we minimize the changes we need to
make to Libxl.

B.6. Direct booting of DomT in conjunction with Dom0

As we explained in chapter 5, tboot loads the hypervisor, after which the
hypervisor loads both dom0 and domt.

B.6.1. TBoot

In section 2.3 we introduced the various trusted computing concepts. We
also mentioned that nowadays, it is possible to create a dynamic root of trust
for measurements (drtm) using the new tools provided by Intel and amd,
respectively txt and amd-v. In the architecture chapter, we introduced tboot
which helps us with bootstrapping the components in a secure matter. Here we
briefly review the essentials regarding tboot which show why it is useful for
caas. In appendix C we give a full and complete overview of how tboot works
and how we precisely configure it (including which pcrs).

Localities. A brief point that is noteworthy regarding the new drtm instruc-
tions, is that they are part of the tpm specification version 1.2 which also
foresees in the addition of eight new, dynamic pcrs. These new pcrs are
locality bound; this means that only software running at the required locality
can access these pcrs. The list of locaties, with a brief description, is (from
restricted to less restricted):

• Locality 4 — Intel txt hardware use only
• Locality 3 — authenticated code module (see appendix C)
• Locality 2 — trusted os
• Locality 1 — an environment for use by the trusted os

3As shown in the mini-os overview picture, Fig. B.2, the Libc layer in mini-os reroutes file
i/o calls to our vfs module.

105

B. Implementation details

• Locality 0 — non-trusted and legacy tpm operation

The important contribution of localities to the caas design is the fact that we
can allow the use of the lowest-level locality to dom0, without compromising the
security of our design. To achieve this, our access control module (appendix B.3)
ensures that the higher localities can only be assigned to domt and not to
dom0. Hence, only domt can talk to the tpm at the locality of a trusted os —
since the certified binding key that we create is bound to pcrs and localities, it
is not possible for dom0 to use (and abuse) this binding key.

Protection against DMA. As we mentioned in the problem description in
chapter 3, we recognize dma as a risk to the confidentiality and integrity of the
memory state of a vm. Fortunately, Xen already supports vt-d in both the
hypervisor as well as domain building.4 Therefore we leverage this functionality
to protect against dma attacks.

B.6.2. Direct booting of DomT

In the vanilla Xen design, the hypervisor boots only the dom0 domain, which
then takes care of booting other domains. In our design, however, it is vital that
the hypervisor, which is part of the tcb, directly boots the other tcb component,
domt. Booting domt in the same manner as dom0 is in principle not too
involved, since both domains are paravirtualized. But there are differences.

• A normal domu expects to find in its start info page the grant references
for the Xenstore and the console.

• Likewise, it expects to find event channel numbers in the start info page
to which it can immediately connect to signal dom0 for waiting data on
these channels.

Our approach involved changes in three areas.

Hypervisor. We modified the Xen hypervisor to consider the first multiboot
module passed to it (by tboot) as the domt module. The first module following
domt will now be considered the dom0 kernel instead, and the first subsequent
module will be considered as dom0 ramdisk.
We also extend the vt-d protection to the domt memory range, protecting

domt against dma attacks.
4The vt-d technology is Intel’s implementation of an input/ouput memory management

unit (iommu), the device which adds a layer of indirection to dma, preventing access to
undesired memory ranges.

106

B. Implementation details

Property Value
Key type: Binding key
Pcrs: Tboot, Xen, domt, and the templates
Locality: Locality 2 (only a trusted os can use the key)
Migratability: Non-migratable

Table B.2: Key properties for the certified binding key created in the tpm.

Mini-OS modifications. Mini-os is not designed to be started without the
console or Xenstore being available. Hence, without any modifications it will
crash immediately when writing to the console during booting.

Our solution involves establishing the Xenstore and console pipes at runtime.
We modified the boot order for mini-os components to bring up as very first
the grant table mechanism and interrupt handler. Any mini-os debugging
output up to this point will be outputted to the Xen console instead of the
ordinary console from dom0. Mini-os will sleep until dom0 is ready to make a
connection, after which mini-os proceeds with the normal initialization of its
remaining components, and after that, the launching our payload. This work
is embodied in the ‘discovery’ module we created, as depicted in the mini-os
overview (Fig. B.2).

Dom0 helper tools. The communication channel between dom0 and domt
suffers from a chicken-and-egg problem: we would like to share the grant
reference and event channel port number of the Xenstore ring buffer with the
other party — but normally one shares this information through the Xenstore!
To solve this, we could either (i) add an hypercall to pass these numbers around,
or (ii) use conventions that reserve grant references and event channel port
numbers for this use. We opted for the latter approach.

While dom0 and domt boot simultaneously, in the typical scenario the mini-
os based domt will be quicker to initialize than the Linux based dom0. As
described in the previous paragraph, domt will wait until dom0 is ready. In the
final phase of booting dom0, it will start up our Xenkicker program, which is a
simple c program that, using Libxc, maps the grant references and connects to
the event channels of which the numbers are fixed by convention. After this
step, the mini-os unpauses and continues to boot the domt.

107

B. Implementation details

B.7. Trusted platform module driver

The domt creates a certified binding key with the properties shown in Table B.2
and performs various operations using the tpm. Therefore, as shown in the mini-
os overview (Fig. B.2), we created a tc module for domt which implements the
tc operations from section 5.3. Our tc module communicates with the tpm
through the tpm interface, although this is merely a thin layer. The tpm is an
example of a device accessible through memory mapped input/output (mmio).
Hence, basic communication is not very complex since the tpm is addressable
as if it were ram memory.

While on Linux and Windows there are libraries available for interacting with
the tpm (e.g., Trousers [TR]), no such effort exists for mini-os. Our tc module
fills this gap; it adds support for many of the tpm commands based on the tpm
specifications [TCG03]. This includes adding support the typical tpm overhead
such as osap and oiap sessions.

CaaS control module. While the tc module implements the tpm commands,
the caas module (cf. Fig. B.2) handles the steering of domt and uses the tpm
commands exported by the tc module.

After booting domt, the caas module reads in the persistent tpm state from
the dom0 filesystem using simple posix i/o calls, which are backed transparently
by the vfs module (cf. Fig. 6.4). This state is untrusted, but that is not a
vulnerability since it only affects availability. The state comprises

• the tpm public key part of the certified binding key;
• the private key part of this key (encrypted by the tpm);
• miscellaneous items such as the current value of the tpm counter.

We did not complete the counters support; hence, only the first two items
are implemented.

B.8. Passthrough encryption

We utilize vtpms so that the cloud consumer’s high value keys can be safeguarded
against the external adversary (req. R1). Instead of letting these vtpms live in
in dom0, we choose to give each vtpm its own domain, a domc domain.

We considered two possible approaches for protecting the confidentiality and
integrity of the consumer’s i/o data streams (as opposed to ram) from the
adversary.

108

B. Implementation details

1. Exert control over the entire workflow. This would mean to disaggregate
the dom0 such that the administrator cannot interact or interfere with the
components that perform disk i/o. Since dom0 is so heavily involved in
providing the back-end of block devices, it is challenging to disaggregate
such functionality away from the dom0, although Colp et al. achieve some
success here [Col+11]. The situation becomes increasingly difficult when
considering network mounted storage as is common in clouds nowadays;
these all would need to be attested with tc techniques to assure that
there also the disk data is not exposed to the cloud administrators.

2. Encrypting when leaving the tcb. One way would be to have the consumer
run a fde scheme in his or her vm. This key needs to stem from somewhere;
possibly from a vtpm. But only if such a vtpm is rooted in the hardware
tpm, with the vtpm-nv being safeguarded, is such an approach viable.

We remark that the most commonly used disk encryption schemes such as
Truecrypt [TC] or Bitlocker [Fer06] lack the support for integrity protection
that is necessary to protect against tampering and rollback. While this is fine
for the typical scenario of protecting against laptop theft, these schemes are
inadequate for protecting integrity in the cloud. While there exist integrity
preserving filesystems (e.g., zfs), that could perhaps be used ontop on one of
the aforementioned fde schemes, the domc design relieves consumers from the
burden of having to worry about setting up and maintaining such a filesystem;
in the domc design they can use whatever they are used to.
The passthrough encryption is achieved by domc offering a block device to

the domu which looks indistinguishable from a block device offered by dom0.
An immediate advantage of this approach is that no modifications in the cloud
consumer’s vm are needed; it will work with a vanilla pvops Linux kernel.5

Our kernel of choice for domc is (just like for domt) a mini-os kernel because
of its tiny tcb. Our passthrough block device for mini-os relies on three
components working together:

1. first, we need to connect a block front-end device to the (encrypted) disk
offered by dom0;

2. second, we need to apply encryption inside mini-os for any data that we
wish to forward from one side to the other;

3. third, we need a block back-end driver for mini-os to talk to domu.
5Pvops refers to paravirtual operations being natively embedded in the kernel source as

opposed to distributed as a separate patchset. Linux versions of 3.2 and higher are pvops
enabled.

109

B. Implementation details

There exist block back-end implementations for Linux, various bsds and
OpenSolaris. However, none exists for mini-os, probably due to the fact that
there are no drivers for mini-os which talk directly to hardware. Nevertheless,
a front-end block device driver is available for mini-os, which meant we only
needed to write one of the two split-drivers, namely the block back-end.

B.8.1. Cryptography

In its primitive form, a vm at rest can be represented by a virtual disk, i.e. as a
large byte array that represents a filesystem. As the user wishes to protect the
confidentiality and integrity of this vm (req. R2), this virtual disk is encrypted.
Clearly, the naive approach of encrypting the complete disk using cipher-block
chaining (cbc) is unsuitable; for decrypting a file at the end of the disk, the
entire disk would need to be traversed and decrypted. Therefore, we encrypt
the disk using an established fde scheme.

ESSIV. The scheme we chose for our passthrough encryption is encrypted
salt-sector initialization vector (essiv) [Fru05], although any fde scheme can
be used in the domc. This scheme is relatively simple (i.e., there exist more
sophisticated schemes with better performance), but due to its simplicity it is
a good candidate for our implementation. Nonetheless, we were not aware of
vulnerabilities with respect to its confidentiality guarantees at the moment of
writing this thesis.6 But even if there were vulnerabilities, the fde scheme used
in caas can be upgraded without loss of generality. Moreover, this scheme is
simple to implement and is also the default scheme used by the Linux dm-crypt
kernel driver [Sau].

In Fig. B.9 the encrypt and decryption operations under essiv with cbc are
exhibited. This scheme is the application of cbc at sector level combined with a
nonstandard way of calculating the initialization vector (iv). The iv for sector
i is calculated as [Fru05]:

IV (i) = Es(i), where s = hash(k)

The hash function used in essiv must output a digest length which is suitable
as key length for the block cipher. In our implementation, we use sha-256
together with aes.

6This is true for confidentiality. However, with respect to integrity, the situation is quite
different. In fact, as seen in in Fig. B.9b, due to the cbc a single bit flip in the ciphertext block
E(mi) scrambles only mi and an attacker-chosen bit in mi+1. This is a undesired property,
and therefore integrity protection measures are needed.

110

B. Implementation details

aes
encryption

init. vector

hash

sha-256

key plaintext:
sector number

plaintext mi

ciphertext E(mi)

aes
encryption

⊕

key

plaintext mi+1

ciphertext E(mi+1)

aes
encryption

⊕

key

. . .

(a) Encryption operation.

aes
encryption

init. vector

hash

sha-256

key plaintext:
sector number

ciphertext E(mi)

plaintext mi

aes
decryption

⊕

key

ciphertext E(mi+1)

plaintext mi+1

aes
decryption

⊕

key

. . .

(b) Decryption operation.

Figure B.9: Disk encryption with aes and cbc using essiv for ivs.

111

B. Implementation details

B.8.2. DomC back-end driver

In the mini-os overview figure (Fig. B.2), it is visible that the domc incorporates
a disk back-end driver. This back-end driver that we wrote for mini-os follows
the same paradigm as its Linux counterpart. How this block back-end driver is
set-up in relation to the other components is shown in Fig. B.10. This figure
presents a simple summary of how the domc services are configured after the
creation of the cloud consumer’s vm.
In Fig. B.11, the structure of a request on the block interface between the

front-end and back-end is exhibited. All of the Xen virtual devices work using
a ring buffer with a producer and consumer that can operate simultaneously
without locking. Requests are placed on the ring buffer by the requester (i.e.,
domu) and removed by the responder (i.e., domc, or dom0 in case of normal
devices). A block interface request has several attributes describing the kind of
request, as shown in Fig. B.11. In particular, each request contains (aside from
the sector number) a list of segments. Each segment points to a page frame and
indicates the first and last sector in the page frame to transfer. This does not
need to be contiguous (e.g., as shown on the right hand side in Fig. B.11) but
can be spread out over many page frames. The reason for this fragmentation is
that the front-end kernel might split the i/o buffer over several noncontiguous
pages due to its paging mechanism, in what it perceives as its physical memory.
Our block back-end has to take this fragmentation into account when mapping
and reading data requests. With a typical page size of 4096 bytes, up to 8
sectors can be read or written in a segment. Our block-backend can handle
multiple disk back-ends in a single session, within the limits set by mini-os (i.e.,
no pre-emptive threads, no smp).

B.8.3. Applying passthrough encryption

The basic application of our cryptographic module in domc is simple — we
apply the operations in-between the copying between the front and back ring
buffers. The key used in these operations is supplied by the cloud consumer. As
we have listed in Fig. B.4 (p. 93), there are a few data items which need to be
provided to domc. These data items are coupled in what we call csinfo. Sharing
this info through the Xenstore would be rather unwise, since it is ill-suited as a
secure transport medium. Instead, during the domain building, domt injects
this csinfo into domc’s memory range. During the mini-os booting process in
in domc, the csinfo is read and processed.

112

B. Implementation details

:dom0 :domt :domc :domu

Discover 1

Retrieve tpm state
and templates 2

Command: create vm 3

Domain launch 4

Domain launch 4

Set up block device 5

Fig. D.1Fig. D.1

Set up block device 6

Fig. D.1Fig. D.1

Figure B.10: Overview of the initialization of the domc devices. 1 After
booting by the hypervisor, the dom0 and domt must find each other after
their respective initializations (appendix B.6). 2 The domt fetches the
tpm state and templates. 3 Whenever a request is placed in dom0 for the
creation of a vm, this request is then forwarded to domt. 4 Both domains
are launched together, and the key is injected into the domc. 5 First the
domc attaches to the block device offered by dom0. 6 Then domc offers a
block device to the domu, who does not need to be modified for this.
The last two steps are shown in detail in appendix D.

113

B. Implementation details

block interface request

segment

· operation type
· device handle
· request identifier
· start sector number

· grant reference
· sector first, last

read / write

integer via which
the front-end
tracks requests

ring
buffer

Figure B.11: Structure of block interface requests which are placed in the ring
buffer.

B.9. vTPMs and PV-TGRUB

In the Xen introduction we briefly mentioned a Xen-specific bootloader called
pv-grub (cf. subsection 2.2.2, p. 14). In the architecture, we mentioned that our
design expands on this tool by adding the concept of extending measurements
of the loaded kernel to the vtpm. We looked at what solutions already exist for
trusted booting. In a non-virtualized environment, two bootloader designs are
known which make use of the tpm.

• tgrub [TG], which installs a srtm during boot; and

• oslo [Kau07] for amd and tboot [TB] for Intel, which install a drtm during
boot.

For a proper (that is, using a root of trust) vtpm operation, it is necessary
that the first loaded piece of software (the kernel) is always measured. The
normal pv-grub has no such functionality, therefore, we propose to extend the
pv-grub with the ability to extend the first chain-loaded piece of software to
the vtpm, in an approach similar to the trusted boot loaders listed above.

This approach using pv-tgrub is architecturally cleaner than the alternative,
which is to have domt perform the initial measurement and store the value
in the vtpm. Such an approach would be a complex task, because normally
the domain builder does not actually look into the virtual devices which are
attached to a new domain.

114

B. Implementation details

Implementation status. A lack of time meant pv-tgrub as well as the vtpm
did not see it to the final development phase.

• Regarding the vtpm, there are improvements in the pipeline for the
upcoming Xen release which will compile a vtpm and a vtpm manager
on mini-os. Using these improvements it will become possible to include
a vtpm in the mini-os domc, and the vtpm manager in the domt. Our
csinfo implementation already reserves space for this extension.

• While we did do successful trial runs with booting a pv-grub, we were
still in the phase of making pv-grub work, and the pv-tgrub extensions
were an option yet.

B.10. Services

In section 5.3 we discussed in the light of key provisioning various parties
involved in the deployment of vms, such as the cloud consumer and a cv. We
implemented only the cloud consumer tools.

B.10.1. User VM deployment tool

We created a Python based tool which assists cloud consumers in deployment of
their vms to a caas system. This tool, deployer.py, currently has one mode
of operation, which takes the following parameters.

In parameters:
• path to public key file of the target tpm
• path to the vm disk image

Out parameters:
• path where to write the encrypted vm (i.e., evm structure)
• path where to write the vmcb

The tool operates in two stages. In the first stage, it creates a random
symmetric key and applies the fde scheme onto the vm disk image (resulting in
the evm). In the second stage, it encrypts this symmetric key with the public
key of the tpm. This ciphertext comprises the vmcb.7

The deployer.py tool is written in Python so that it is easily extensible. In
the underlying engine code, we wrap c calls to the tss service provider interface
(tspi) library so that we can easily work with the tpm public key and certificate.

7The other fields of the vmcb structure are not implemented in the proof of concept.

115

B. Implementation details

This is fine for the proof of concept, although in the future the tspi dependency
might be augmented with a native Python version since the operations are
essentially simply rsa operations. We note that the tspi library does not need
a tpm; the cloud consumer’s tpm is not used for creating an evm or vmcb.

116

C. Details on the use of TBoot

Due to our lab equipment comprising only an Intel machine, we restrict our
discussion to txt, although all concepts apply to amd-v as well. These details
originate from the Intel measured launch environment (mle) development
guide [TXT] and the tboot documentation [TB].
Intel txt works by starting a measured launch to guarantee a secure boot

and revolves around a new cpu instruction: GETSEC[SENTER]. This command
works in two stages; in the first stage it takes an authenticated code module,
also referred to as sinit blob, while in the second stage it takes a mle blob. An
implementation of an mle is for example Trusted Boot (tboot) or Flicker.1 We
briefly review these two components.

SINIT. As soon as SENTER is called, the processor enters a secure environment
(i.e., halt cpus, disable interrupts and protect memory), resets the dynamic
pcrs (pcr 17 to 23) and executes the sinit. This sinit blob is signed by Intel
and this signature is verified by the SENTER instruction. The job of the sinit
module is to verify a proper chipset configuration. Trusting the sinit module
(based on Intel’s endorsement) is essential and forms the core root of trust that
replaces the trust normally placed into the bios.
Furthermore, the sinit reads from the tpm non-volatile memory (tpm-nv)

the launch control policy (lcp).2 The lcp specifies, using an approved hash,
which mle is allowed to be ran. (Optionally, it can contain more conditions
such as a bios hash.)

Before launching the mle, pcr-17 will be extended with several chipset values,
and most importantly, a hash of the lcp policy.

Measured launch environment. The mle that we will discuss here is tboot.
Tboot is an open source, pre-kernel module that uses Intel txt to perform a

1Flicker allows the execution of small pieces of code in complete isolation during runtime.
See McCune et al. [Mc+08].

2Writing to the tpm-nv requires to be authenticated as owner of the tpm, hence, this
data can be considered as coming from a trusted source.

117

C. Details on the use of tboot

kernel /boot/ tboot . gz 〈Tboot arguments〉
Xen hyperv i so r and DomT TCB modules :
module /boot/xen . gz 〈Xen arguments〉
module /boot/domt
Dom0 ke rne l p lus i n i t i a l ramdisk :
module /boot/vmlinuz−l i nux 〈Linux arguments〉
module /boot/ in i t r amf s−l i nux . img
Modules used e x c l u s i v e l y by Tboot :
module /boot/ pol / l i s t . data
module /boot/ s i n i t . bin

Listing C.1: Grub with tboot example.

measured and verified launch of an os kernel [TB]. Because the Xen hypervisor
behaves as a multiboot3 compliant kernel, it works well with tboot.

Tboot examines the given multiboot modules and verifies each one against a
policy stored in the tpm-nv by the owner (i.e., in similar fashion to the lcp).
The flexibility of these verified launch (vl) policies is quite high. One can give
a decision type (halt or continue on pcr mismatch) and support a variable list
of approved modules. One can also specify to which pcr the specific measured
module should be extended (for modules after the first one).

Tboot will extend the hash of tboot to pcr-18, as well as the hash of the
first module which will be booted (e.g. Xen or Linux kernel). Finally, it will
chainload the first module that was passed to it.

Application in CaaS

We will clarify the previous text with a description of how tboot is used in our
situation. In our grub configuration file we boot the modules in the fashion
shown in listing C.1. Note that tboot is the first module to be launched; it will
take care of starting the SENTER with the sinit module, after which the sinit
will pass control to tboot in the manner described above.

In listing C.1 we load seven modules in total. The last two modules will be
used by tboot itself, which leaves four modules to be handled with a verified
launch policy: Xen, domt, dom0 Linux and the initial ramdisk used by the
dom0 Linux kernel.
In order for tboot to verify these modules, we write these policies to the

3The multiboot specification by the Free Software Foundation is a specification which is
used, amongst others, by Linux, Xen and tboot. An important part of the specification is the
ability to pass a variable list of modules to a kernel.

118

C. Details on the use of tboot

Creat ion o f a po l i c y which cont inues on mismatch :
tb_polgen −−c r e a t e −−type cont inue cont . po l
tb_polgen −−add −−num 0 −−pcr none −−hash image \

−−cmdline 〈Xen arguments〉 −−image xen . gz cont . po l
tb_polgen −−add −−num 1 −−pcr 19 −−hash image \

−−image domt . gz cont . po l
...

...
Write po l i c y to TPM:
lcp_writepol − i 0x20000001 −f cont . po l −p 〈tpm password〉

Listing C.2: Writing verified launch policies to tpm-nv.

tpm-nv beforehand. In listing C.2 we show how we generate a policy file which
we write to the tpm-nv.

PCR. One of the benefits of our caas design is that dom0 is no longer part of the
tcb. However, tboot expects to find a policy for all given modules. Therefore,
we need to find a way to exclude dom0 from tainting our measurements.

The first component of our solution is to set a ‘continue’ policy (as shown
in listing C.2), which will continue execution on a verification error (i.e., if the
dom0 kernel is upgraded which results in an updated hash). This does not
affect the security of our solution since we rely on a pcr-bound binding key,
and not on a verified launch policy.

The second component involves using the vl policy to write the dom0 Linux
and ramdisk to a separate pcr which we will not include in the pcrs used for
creating a certified binding key. Our pcrs will look like this:

• pcr-17: hash chipset firmware and of lcp
• pcr-18: hash of mle (tboot)
• pcr-19: hash of domt
• pcr-20: hash of dom0 kernel and ramdisk (ignored for the binding key)

Using this approach, we guarantee that a trusted tcb (hypervisor plus domt)
has been booted. We remark, as highlighted earlier, that this authenticated
boot is not intended to form a protection against runtime attacks (e.g., buffer
overflows). The use of tboot creates a drtm, but the execution of secure
components does not live in a protected environment as is the case with for
instance Flicker [Mc+08].

119

D. Xenstore device handshaking

All of the Xen virtual devices work using a ring buffer with a producer and
consumer which is a straightforward building block. The establishment of such
devices happens via the Xenstore. In Fig. D.1 we show the sequence diagram
of handshaking a device between the front-end and back-end.

120

D. Xenstore device handshaking

:back-end :front-end

The domain builder notifies:
a new domain has been created

Write back-end device info under B/· · ·
Write path to back-end (i.e., B) at F/backend

Write “Initialised” at B/state
Sleep until F/state equals “Initialised”

Wakes due to new device appearing at F
Read back-end path from F/backend
Read device info from B/· · ·

Create grant table reference
Write at F/ring-ref

Create event channel port
Write at F/event-channel

Write “Initialised” at F/state
Sleep until B/state equals “Connected”

Wakes due to state change to “Initialized” at F/state

Connect to grant reference from F/ring-ref
Connect to event channel from F/event-channel

Write “Connected” at B/state
Sleep until F/state equals “Connected”

Wakes due to state change to “Connected” at B/state

Write “Connected” at F/state

Wakes due to state change to “Connected” at F/state

id: front-end id
dev: device id

B: /local/domain/0/backend/vbd/id/dev
F : /local/domain/id/device/vbd/dev

Figure D.1: The Xenstore handshaking between the front-end and back-end
for establishing a common ring buffer. For simplicity, the back-end is shown
as being domain 0.

121

E. Xenstore security

Because the csinfo (see appendix B.2) includes the domain ids of the domc
and the domu, the domc will not offer any of its services (e.g., the decrypted
virtual disk) to any other domain than its designated domu. Therefore, it is not
possible for a malicious domu — such as one under control by the malicious
insider — to attach to this domc and fake to be the corresponding domu.

However, this is only one side of story. The domu has no guaranteed way of
knowing which domain is the domc, hence, a rogue domain could pretend to
be a domc and offer a block device to domu.1 While this does not compromise
the confidentiality of the secrets, it could be considered as a loss of integrity
(requirements R1 and R2). For instance, if the vm involved is a service that
makes access control decisions based on secrets offered by the (rogue) domc,
the validity of these decisions could be undermined — with dire consequences.
There are two straightforward solutions. An easy solution to this problem
could be to inject this information at build time in domu, too. However, this
contradicts our design goal that no modifications to domu are needed. It is
more appealing to lock down the Xenstore such that dom0 cannot tamper with
it any longer.

Trusted Xenstore. A locked-down and trusted Xenstore would mean that only
domains designated by domt can offer back-end devices to other domains.

In Xoar, Colp et al. created a new domain which holds the Xenstore exclusively,
out of reach of dom0 [Col+11].2 Our caas architecture can easily be adapted to
work with such a system: our caas security module would shield this Xenstore
domain, while the domt would be designated as the only domain which has
administrative privileges over the contents of the Xenstore. This results in the
inclusion of the Xenstore helper domain into the tcb. To prevent tampering,
domt has to extend the hash of this Xenstore helper domain to the tpm (in
the step depicted in Fig. 6.3).

1By default, the Xenstore will not allow this, hence, the only adversary who can do this
would be the cloud administrator.

2There a changes in the pipeline for inclusion of a mini-os based Xenstore domain into
the upcoming Xen release.

122

F. Xen hypercalls

In Table F.1 we list the hypercalls for the Xen version we examined (ver-
sion 4.1.2). For each hypercall we have three columns with properties. In the
first column, Self, we mark if the hypercall can be invoked with the calling
domain as affected entity. In the second column, Other, we mark if the hypercall
can be called with another domain as subject. For both these columns, the
symbol × indicates that this property holds, while the symbol ⊗ indicates that,
additionally, a privileged status is mandatory.
In the third column we indicate how we make the preconditions for the

hypercall stronger. A Z means that that only the Domain Zero (dom0) can
execute the hypercall, while a T indicates that only domt can execute the
hypercall. These restrictions affect only the privileged hypercall versions and
come ontop of existing requirements. Sometimes, we do not wish to restrict the
privileged command because we need it in both domains. This is denoted by
the · symbol. Furthermore, we abolish certain privileged hypercalls, indicated
with the symbol . These are generally debugging hypercalls which belong
neither in the category of dom0 nor domt in a production environment. For
each hypercall the superscript denotes the relevant xsm hook and in which
source file the hypercall is implemented.1

In general, the unprivileged hypercalls map to functionality which the guest
kernel needs to do its everyday tasks but for which it in a pv environment lacks
access. As an archetypal example, the hypercall #2 in Table F.1 requests the
hypervisor to update page tables on behalf of the calling domain.
The privileged hypercalls deal with all the other cases, such as providing

emulation for other domains and managing shared resources.

The table was compiled based on analyzing the Xen source code. We are
not aware of any such hypercall table for Xen being available; the nearest
approximation (that is, the list of hypercalls from the Xen documentation) only
covers a very small set.

1These can be looked up in Table F.2 (p. 132) and tables G.1 and G.2 (p. 133) from
appendix G.

123

F. Xen hypercalls

Table F.1: Overview of Xen hypercalls. Hypercalls are defined at various
granularities in Xen; we list the subcalls of each hypercall if these are suffi-
ciently distinct. Most of the nomenclature used in the descriptions is detailed
in the list of acronyms.

Hypercall S O R Description
Primary hypercalls

1 set_trap_tableL × Installs the virtual interrupt descriptor table for the domain. Xen will
inform the domain via callbacks.

2 mmu_updateG59,58 ×† ⊗ T
Update the specified domain’s page tables or the machine to physical
(m2p) table. This function is efficient on large batches of requests packed
together in one hypercall invocation.

3 update_va_mappingG80 ×
This hypercall is designed for a single page table update when the over-
head from hypercall #2 for operating on batches of requests is not
needed.

4
update_va_mapping
_otherdomainG80 ⊗ T Identical to hypercall #3, but applies only on other domains.

5 set_gdtG × Installs a (new) global descriptor table for a vcpu of the domain.
6 stack_switchC × Switches the kernel stack for the domain.

7 set_callbacksD × Register the entry functions via which the hypervisor informs the do-
main of virtual interrupts.

8 fpu_taskswitchL × An optimization feature in which the hypervisor sets the task switch
(ts) bit in control register 0 for a vcpu for the domain.‡

9 set_debugregL × Sets the debug registers for a vcpu of the domain.
10 get_debugregL × Returns the debug registers for a vcpu of the domain.
11 update_descriptorG × Set the domain’s thread local storage descriptors.
12 multicallU × Execute multiple hypercalls in one go.
13 set_timer_opV × Sets a one-shot timer for the domain’s current vcpu.

14 xen_versionR × Returns various Xen version information (major, minor, compiler info,
etc.) on demand.

15 console_ioR1 ⊗ · Read and write to the Xen emergency console.

16 vm_assistN × Enable various vm assist functionality to lessen the burden for pv port-
ing efforts.

†This is an example of a hypercall with both a privileged and unprivileged version. A
domain requires no privileges to update its page tables with machine pages it owns. However,
privileges are required when mapping pages which are not owned or when changing another
domain’s page tables.

‡Normally, after a context switch the os needs to restore the floating point registers for
the active thread. This is a waste of cycles if the floating point operations are never used.
The solution is the ts flag. Once the ts flag is set, the cpu will trap as soon as a floating
point operation is invoked, allowing the kernel to interpose and set the floating point registers.

124

F. Xen hypercalls

Hypercall S O R Description

17 iretD ×
Asks Xen to perform an interrupt return (iret) instruction on behalf
of the domain. The iret instruction is used to return from the kernel
to usermode.

18 set_segment_baseM ×
In the x86-64 architecture, segment addressing has been has been largely
removed; however the fs and gs registers have been retained because
operating systems have come to rely on them as extra base pointers.

19 mmuext_opG16 ×
Allows a domain to request various mmu operations not covered by
hypercall #2, such as pinning pages, tlb flush, local descriptor table
update, and more.

20 xsm_opY20 ×
Allows a domain to communicate with the loaded xsm module (cf. ap-
pendix B.3), if any. No privileges are required, xsm handles the access
control itself.

21 nmi_opR × Register a non-maskable interrupt handler. Nmis generally indicates
nonrecoverable hardware errors.

22 callback_opD × Register a callback with a wider range of types than either #7 or #21.
It can also unregister callbacks.

23 vcpu_opN ×
Allows the domain to perform several actions on a vcpu, for instance
bringing up or down a vcpu or setting a timer. Analogous to the op-
erations possible on a cpu core without virtualization. (Spread over 14
omitted subcalls.)

24 hvm_opF11,13,12,14 × ⊗ T Various hvm related commands related to injecting traps, flushing the
tlb, etc. (Spread over 16 omitted subcalls.)

25 tmem_op × Xen transcendent memory interface, allowing domain kernels to share
memory caches. (Spread over 13 omitted subcalls.)

26 kexec_opS51 ⊗
Replace the hypervisor kernel with any other kexec supported kernel
such as Linux or Xen without rebooting. It can also start an emergency
kernel in case of hypervisor or dom0 crash. (Spread over 4 omitted
subcalls.)

27 xenoprof_opX65 ⊗ ⊗ Profile domains with a module in the Xen hypervisor. (Spread over 18
omitted subcalls.)

Memory reservation and information (HYPERVISOR_memory_op)

28.1 increase_reservationT54 × ⊗ Z Increases specified domain’s current memory reservation within the
maximum allowance.

28.2 decrease_reservationT54 × ⊗ Z Decreases specified current domain’s memory reservation.
28.3 populate_physmapT54 × ⊗ T Populates the memory of specified domain with pages.

28.4 exchangeT × ⊗ T
Exchange memory reservations in atomic fashion. For instance, this
is used to accumulate fragments into one contiguous block. All the
memory pages must be owned by the same domain.

28.5 maximum_ram_pageT × Returns the highest machine frame number of mapped ram in this sys-
tem.

28.6 current_reservationT55 × ⊗ Z Returns the current memory reservation for specified domain.

28.7 maximum
_reservationT55 × ⊗ Z Returns the maximum memory reservation for specified domain.

28.8 machphys_mfn_listB × Returns the list of mfns comprising the m2p table.

125

F. Xen hypercalls

Hypercall S O R Description

28.9 maximum_gpfnA55 × ⊗ T Returns the highest guest page frame number (gpfn) in use by specified
domain.

28.10 machphys_mappingA × Returns the virtual address of the m2p table.

28.11 add_to_physmapA23 × ⊗ T Sets the gpfn at which a certain page appears to the specified domain.

28.12 memory_mapA × Returns the domain’s physical memory map, also known as the e820
map, as it was when the domain was started.

28.13
machine_memory
_mapA15 ⊗ ·

Returns the machine memory map. Dom0 needs this information to
configure its hardware devices. The table returned is the e820 map
offered by the bios and gives no information about the current status
of the ram.

28.14 set_memory_mapA33 × ⊗ T
Set the physical memory map of the specified domain. This map is
consulted at domain start. It is much more simple than the one offered
by the bios because domains see only abstracted memory.

28.15 set_pod_targetA ⊗ T Sets the populate-on-demand (pod) target (only makes sense for hvm
domains).

28.16 get_pod_targetA ⊗ T Returns the pod target.

28.17
get_sharing_freed
_pagesA ×

Part of experimental code for page sharing between vms; this hypercall
returns the number of mfns saved. Should be considered part of memory
sharing hypercalls listed below.

Grant table operations (HYPERVISOR_grant_table_op)
29.1 map_grant_refQ8 × Map a list of grant references into the domain’s page tables.
29.2 unmap_grant_refQ9 × Release a list of mapped grant references.
29.3 setup_tableQ48 × ⊗ T Initialize the grant table for a domain.

29.4 transferQ10 × Instead of merely sharing a page, this hypercall irrevocably transfers
control.

29.5 copyQ7 ×

Asks the hypervisor to do memory copying between (shared) pages,
obviating the need for a guest to map grant references and perform
the memory copies himself. The hypervisor can do this more efficient
because it already has all the memory pages of the machine in its page
tables.

29.6 query_sizeQ47 × ⊗ T Returns the current and maximum sizes of a domain’s grant table.

29.7 unmap_and_replaceQ × Unmaps a grant reference, but atomically replaces the page table entry
to point to a new machine page.

29.8 set_versionQ × Before any grants are activated, it can be chosen by the domain whether
it wants version 2 or version 1 (backwards compatibility) of grant tables.

29.9 get_status_framesQ × ⊗ T Gets the list of frames used to store grant status for a specified domain;
in version 2 of the grant tables this can speed up synchronization.

29.10 get_versionQ × ⊗ T Retrieves the version (either 1 or 2) used for the grant table of a specified
domain.

Scheduler operations (HYPERVISOR_sched_op)

126

F. Xen hypercalls

Hypercall S O R Description
30.1 yieldV × Yield the vcpu for others to use.
30.2 blockV × Block the vcpu until an event is received for processing.
30.3 shutdownV × Halt the entire domain.
30.4 pollV × Poll a set of event channel ports.
30.5 remote_shutdownV70 ⊗ Z Shutdown another domain.

30.6 shutdown_codeV × Set the shutdown code which will reported to the tools, e.g., for telling
the tools this domain crashed or whether it exited normally.

30.7 watchdogV × Start, poke or destroy a domain watchdog timer.

Event channel operations (HYPERVISOR_evtchn_op)

31.1 alloc_unboundP25,37 × ⊗ T Allocates and returns an unused port number for communication with
a specified domain.

31.2 bind_interdomainP4 × Bind a local port to a specified remote port and domain number.

31.3 bind_virqP × Bind a local event channel to a virtual interrupt request on a specified
vcpu.

31.4 bind_pirqP ×§ Bind a local event channel to a machine irq.
31.5 bind_ipiP × Bind a local event channel to receive inter-processor interrupt events.
31.6 closeP3 × Close an event channel.
31.7 sendP5 × Send an event over an event channel.

31.8 statusP36 × ⊗ T Get the status of an event channel connected at a specified domain and
port.

31.9 bind_vcpuP × Change the vcpu at which event for a specified port are delivered.

31.10 unmaskP × Unmask the local event channel (and deliver any pending events).

31.11 resetP35 × ⊗ T Close all event channels associated with a specified domain.

Platform hypercalls¶ (HYPERVISOR_platform_op)
32.1 settimeI84 ⊗ Z Set the machine wall clock time.

32.2 add_memtypeI56 ⊗ Z Configures ranges of ram to be enabled for processor caching using the
cpu memory type range registers (mtrrs).

32.3 del_memtypeI56 ⊗ Z Reverses the mtrr configurations.
32.4 read_memtypeI56 ⊗ Z Reads the current type of an mtrr.
32.5 microcode_updateI57 ⊗ Allows the cpu microcode to be updated.

32.6 platform_quirkI63 ⊗ Z
On certain hardware it might be necessary to disable irq balancing
or a specific i/o advanced programmable interrupt controller (ioapic)
register.

§The operation does not require privileged status; instead, it mandates that the domain
possesses the irq capability. This is normally only in possession of dom0.

¶There are various machine settings for which the hypervisor cannot or does not want
to have the software logic. For instance, time synchronization would add complexity to the
hypervisor which does not suit well with the notion of a bare-metal hypervisor.

127

F. Xen hypercalls

Hypercall S O R Description

32.7 firmware_infoI39 ⊗ Z Returns the bios enhanced disk driver info, which is a uniform way for
the bios to tell the OS what disk to boot from, among other things.

32.8 enter_acpi_sleepI21 ⊗ Z Puts the machine into advanced Configuration and power interface sleep
state.

32.9 change_freqI30 ⊗ Z Adjusts a cpu core frequency.

32.10 getidletimeI43 ⊗ Z Returns a cpu core idle time.

32.11 set_processor_pminfoI ⊗ Z Adjust a cpu core states, e.g., power saving and throttling.

32.12 get_cpuinfoI ⊗ Z Returns info about a cpu core, such as its online status.

32.13 cpu_onlineI ⊗ Z Brings a cpu core up.

32.14 cpu_offlineI ⊗ Z Brings a cpu core down.

32.15 cpu_hotaddI ⊗ Z Add a cpu at runtime.

32.16 mem_hotaddI ⊗ Z Add ram at runtime.

System control (HYPERVISOR_sysctl_op)
33.1 readconsoleW66 ⊗ Z Reads content from hypervisor console buffer.
33.2 tbuf_opW78 ⊗ Trace buffer operations allows to debug the performance of domains.
33.3 sched_idW69 ⊗ Z Get the id of the current scheduler.
33.4 getdomaininfolistW42 ⊗ · Gets a list of domaininfo structures (cf. 35.12).
33.5 perfc_opW60 ⊗ Provides access to hardware performance counters.
33.6 lockprof_opW ⊗ Allows for profiling of locks in the hypervisor.
33.7 debug_keysW31 ⊗ Inject debug keys into Xen (as if entered over serial line).
33.8 getcpuinfoW41 ⊗ Z Get physical cpu information.
33.9 availheapW28 ⊗ T Returns number of free domain heap pages.

33.10 get_pmstatW40 ⊗ Z Retrieve power management statistics.

33.11 pm_opW64 ⊗ Z Configure power management.

33.12 page_offline_opW ⊗ Z Provides ability to hotplug memory at logical level (take page offline).

33.13 cpupool_opW ⊗ Z Cpu pool operations.

33.14 scheduler_opW ⊗ Z Adjust scheduler for all cpu pools.

33.15 physinfoK61 ⊗ Z Get physical information about the host machine.

128

F. Xen hypercalls

Hypercall S O R Description

33.16 topologyinfoK ⊗ Z Retrieve cpu core/socket/node identifiers.

33.17 numainfoK ⊗ Z Returns numa info.

Passthrough devices (HYPERVISOR_physdev_op)
34.1 manage_pci_addH ⊗ T Adds a pci device to specified domain.
34.2 manage_pci_add_extH ⊗ T Add external pci.
34.3 manage_pci_removeH ⊗ T Removes a pci device.
34.4 eoiH ⊗ T Notify eoi for the specified irq.
34.5 pirq_eoi_gmfnH ⊗ T Mange eois through a shared page.
34.6 irq_status_queryH ⊗ T Query the status of an irq line.
34.7 set_ioplH ⊗ T Set the current vcpu i/o privilege level.
34.8 set_iobitmapH ⊗ T Set the current vcpu i/o port permission bitmap.
34.9 apic_writeH83 ⊗ T Write ioapic register.

34.10 apic_readH83 ⊗ T Read ioapic register.

34.11 alloc_irq_vectorH27 ⊗ T Allocate physical upcall vector for an irq.

34.12 free_irq_vectorH ⊗ T Free physical upcall vector.

34.13 map_pirqH ⊗ T Map physical irq.

34.14 unmap_pirqH ⊗ T Unmap physical irq.

34.15 restore_msiH ⊗ T Restore message signaled interrupt for pci device.

34.16 setup_gsiH ⊗ T Setup global system interrupt.

Domain management operations (HYPERVISOR_domctl_op)
35.1 setvcpucontextO18 ⊗ · Sets the vcpu context of the specified domain and vcpu.
35.2 getvcpucontextO6 ⊗ · Gets the vcpu context.
35.3 pausedomainO17 ⊗ · Pauses execution of the specified domain.
35.4 unpausedomainO19 ⊗ · Unpauses execution of the specified domain.

35.5 resumedomainO68 ⊗ Z Used by the Xen tools in the final part of domain resumption, brings
up the vcpus.

35.6 createdomainO32 ⊗ T Create an empty shell for a new domain by setting up data structures
in the hypervisor.

35.7 max_vcpusO53 ⊗ Z Set the maximum number of vcpus for the specified domain.
35.8 destroydomainO2 ⊗ · Destroy the specified domain and its data structures.

35.9 setvcpuaffinityO81 ⊗ · Set the vcpu affinity, i.e., specifying on which preferred machine cpu
cores the vcpu runs.

129

F. Xen hypercalls

Hypercall S O R Description

35.10 getvcpuaffinityO81 ⊗ · Get the vcpu affinity.

35.11 scheduler_opO71 ⊗ Z Adjust scheduling properties of the specified domain.

35.12 getdomaininfoO42 ⊗ · Get the domain info of a specified list of domains. The domain info
structure contains vcpu info, cpu time, and more.

35.13 getvcpuinfoO46 ⊗ Z Returns various details such as online and cpu time for the specified
domain and vcpu.

35.14 max_memO76 ⊗ · Set the maximum allowed memory for the specified domain.

35.15 setdomainhandleO75 ⊗ T Set the domain handle, which by convention is filled by the domain
builder with the uuid of the vm.

35.16 setdebuggingO74 ⊗ Attach a Xen debugger for the specified domain.

35.17 irq_permissionO22,67 ⊗ T Grant the irq capability to the specified domain which is obligatory for
hypercall #31.4.

35.18 iomem_permissionO22,67 ⊗ T Grant the iomem capability to the specified domain which enables it to
use mmio devices, for instance, a tpm.

35.19 ioport_permissionE22,67 ⊗ T Grant the ioport capability to the specified domain for communicating
with hardware ports.

35.20 settimeoffsetO34 ⊗ Z Set the wall clock time in seconds since 1-1-1970 for the specified do-
main.

35.21 set_targetO73 ⊗ T Sets a target for the specified domain, over whom it then gains full
privileges.

35.22 subscribeO ⊗ T Set the specified domain’s suspend event channel.

35.23 disable_migrateO ⊗ T Disable (or re-enable) the migratability of specified domain.

35.24 shadow_opE77 ⊗ T Control shadow page tables operation (cf. subsection 2.1.3).

35.25 getpageframeinfoE45 ⊗ T Check if a page is pinned to a type.

35.26 getpageframeinfo2E45 ⊗ T Check for an array of pages the pin status.

35.27 getpageframeinfo3E45 ⊗ T Check for an array of pages the pin status (in x86-64).

35.28 getmemlistE44 ⊗ T Returns a list of mfns belonging to a specified domain.

35.29 hypercall_initE50 ⊗ T Initialize for given domain a hypercall page: A small layer of indirection
to give the hypervisor some flexibility in how hypercalls are performed.

35.30 sethvmcontextE49 ⊗ T Sets the hvm context (i.e., the vmcs) for a domain, necessary for mi-
grating hvm machines.

130

F. Xen hypercalls

Hypercall S O R Description

35.31 gethvmcontextE ⊗ T Gets the hvm context for a domain.

35.32 gethvmcontext_partialE ⊗ T Gets the hvm context for a domain (partially).

35.33 set_address_sizeE24 ⊗ T Set the address size for a domain (i.e., to switch to compatibility 32-
bits).

35.34 get_address_sizeE24 ⊗ T Gets the address size.

35.35
set_machine_address
_sizeE52 ⊗ T Define the maximum machine address size which should be allocated

for a specified domain.

35.36
get_machine_address
_sizeE52 ⊗ T Gets the maximum machine address size.

35.37 sendtriggerE72 ⊗ Z Send triggers such as ‘reset button pressed’ to specified hvm domain.

35.38 assign_deviceE26 ⊗ T Assigns a pci device to specified hvm domain, relying on iommu.

35.39 test_assign_deviceE79 ⊗ T Check if a device is already assigned.

35.40 deassign_deviceE ⊗ T Remove the assignment of a device.

35.41 get_device_groupE ⊗ T Retrieve sibling information for a device.

35.42 bind_pt_irqE29 ⊗ T Sets up a passthrough irq from hw directly to specified hvm domain.

35.43 unbind_pt_irqE ⊗ T Removes passthrough irq.

35.44 memory_mappingE ⊗ T Bind mmio range to specified hvm domain.

35.45 ioport_mappingE ⊗ T Binds i/o ports to specified hvm domain.

35.46 pin_mem_cacheattrE62 ⊗ T Pin caching type of ram for specified hvm domain.

35.47 set_ext_vcpucontextE38 ⊗ T Set extended vcpu context.

35.48
get_ext
_vcpucontextE38 ⊗ T Get extended vcpu context.

35.49 setvcpuextstateE82 ⊗ T Set extended vcpu state.

35.50 getvcpuextstateE82 ⊗ T Get extended vcpu state.

35.51 set_cpuidE ⊗ T Set the processor information visible for the specified domain.

131

F. Xen hypercalls

Hypercall S O R Description

35.52 settscinfoE ⊗ T Set time stamp counter (tsc) information for specified domain.

35.53 gettscinfoE ⊗ T Retrieve tsc information for specified domain.

35.54
suppress_spurious
_page_faultsE ⊗ T Disable the injection of spurious page faults into specified domain.

35.55 mem_sharing_opE ⊗ T Memory sharing operations (e.g., copy on write pages between do-
mains).

35.56 debug_opE ⊗ Debug specified hvm domain stepwise.

35.57 mem_event_opE ⊗ Allows memory access listener to perform single stepping for hvm do-
main.

35.58 set_access_requiredE ⊗ Stipulates that the memory access listener must be present, otherwise
pauses the hvm domain.

35.59 gdbsx_guestmemioE ⊗ Debug a domain using gdbsx, inspecting the memory.

35.60 gdbsx_pausevcpuE ⊗ For domain debugging, pause vcpu.

35.61 gdbsx_unpausevcpuE ⊗ For domain debugging, unpause vcpu.

35.62 gdbsx_domstatusE ⊗ For domain debugging, retrieve status of domain.

A. arch/〈arch〉/mm.c
B. arch/〈arch〉〈subarch〉/mm.c
C. arch/x86/〈subarch〉/mm.c
D. arch/x86/〈subarch〉/traps.c
E. arch/x86/domct.c
F. arch/x86/hvm/hvm.c
G. arch/x86/mm.c
H. arch/x86/physdev.c
I. arch/x86/platform_hypercall.c
J. arch/x86/sysctl.c
K. arch/x86/sysctl.c
L. arch/x86/traps.c
M. arch/x86/x86_64/mm.c

N. common/domain.c
O. common/domctl.c
P. common/event_channel.c
Q. common/grant_table.c
R. common/kernel.c
S. common/kexec.c
T. common/memory.c
U. common/multicall.c
V. common/schedule.c
W. common/sysctl.c
X. common/xenoprof.c
Y. xsm/xsm_core.c

Table F.2: Locations where hypercalls are processed. The placeholders are for
hypercalls which are implemented differently across several architectures.

132

G. XSM hooks

To enforce the division of responsibilities between dom0 and domt outlined in
appendix F, we made ample use of the xsm framework. The xsm framework
largely covered our needs, in particular for the hypercalls which most threaten
confidentiality and integrity. In fact, it offers hooks even for hypercalls which are
not privileged, of which we made no use. On the other hand, not all hypercalls
that we wished to curtail have an appropriate hook available. We experimented
with adding our own hooks, however, the magnitude of that operation meant
we could not create all the hooks for this thesis.

In Table G.2 we list all the hooks that were used in our access control module.
In Table G.1 we list the hooks that we did not use in our access control module,
either because it was not necessary (not a privileged operation), or because we
chose to share the hypercall between dom0 and domt and thus no curtailing
was necessary. Both tables list the relevant xsm hook and also which hypercalls
from Table F.1 depend on it.

1. 〈xsm_〉console_io 28.15
2. 〈xsm_〉destroydomain 35.8
3. 〈xsm_〉evtchn_close_post 31.6
4. 〈xsm_〉evtchn_interdomain 31.2
5. 〈xsm_〉evtchn_send 31.7
6. 〈xsm_〉getvcpucontext 35.2
7. 〈xsm_〉grant_copy 29.5
8. 〈xsm_〉grant_map_ref 29.1
9. 〈xsm_〉grant_map_unref 29.2

10. 〈xsm_〉grant_transfer 29.4

11. 〈xsm_〉hvm_param 24
12. 〈xsm_〉hvm_set_isa_irq_level 24
13. 〈xsm_〉hvm_set_pci_intx_level 24
14. 〈xsm_〉hvm_set_pci_link_route 24
15. 〈xsm_〉machine_memory_map 28.13
16. 〈xsm_〉memory_pin_page 19
17. 〈xsm_〉pausedomain 35.3
18. 〈xsm_〉setvcpucontext 35.1
19. 〈xsm_〉unpausedomain 35.4
20. 〈xsm_〉xsm_op 20

Table G.1: Xsm hooks that were not used for our access control.

133

G. Xsm hooks

21. 〈xsm_〉acpi_sleep 32.8
22. 〈xsm_〉add_range 35.18, 35.19, 35.17
23. 〈xsm_〉add_to_physmap 28.11
24. 〈xsm_〉address_size 35.33, 35.34
25. 〈xsm_〉alloc_security_evtchn 31.1
26. 〈xsm_〉assign_device 35.38
27. 〈xsm_〉assign_vector 34.11
28. 〈xsm_〉availheap 33.9
29. 〈xsm_〉bind_pt_irq 35.42
30. 〈xsm_〉change_freq 32.9
31. 〈xsm_〉debug_keys 33.7
32. 〈xsm_〉domain_create 35.6
33. 〈xsm_〉domain_memory_map 28.14
34. 〈xsm_〉domain_settime 35.20
35. 〈xsm_〉evtchn_reset 31.11
36. 〈xsm_〉evtchn_status 31.8
37. 〈xsm_〉evtchn_unbound 31.1
38. 〈xsm_〉ext_vcpucontext 35.47, 35.48
39. 〈xsm_〉firmware_info 32.7
40. 〈xsm_〉get_pmstat 33.10
41. 〈xsm_〉getcpuinfo 33.8
42. 〈xsm_〉getdomaininfo 35.12 ,33.4
43. 〈xsm_〉getidletime 32.10
44. 〈xsm_〉getmemlist 35.28, 35.28, 35.28
45. 〈xsm_〉getpageframeinfo 35.25, 35.26, 35.27
46. 〈xsm_〉getvcpuinfo 35.13
47. 〈xsm_〉grant_query_size 29.6
48. 〈xsm_〉grant_setup 29.3
49. 〈xsm_〉hvmcontext 35.30, 35.31, 35.32
50. 〈xsm_〉hypercall_init 35.29
51. 〈xsm_〉kexec 28.26
52. 〈xsm_〉machine_address_size 35.35, 35.36

53. 〈xsm_〉max_vcpus 35.7
54. 〈xsm_〉memory_adjust_reservation

28.1, 28.2, 28.3
55. 〈xsm_〉memory_stat_reservation

28.6, 28.7, 28.9
56. 〈xsm_〉memtype 32.2, 32.3, 32.4
57. 〈xsm_〉microcode 32.5
58. 〈xsm_〉mm_machphys_update 28.2
59. 〈xsm_〉mm_normal_update 28.2
60. 〈xsm_〉perfcontrol 33.5
61. 〈xsm_〉physinfo 33.15
62. 〈xsm_〉pin_mem_cacheattr 35.46
63. 〈xsm_〉platform_quirk 32.6
64. 〈xsm_〉pm_op 33.11
65. 〈xsm_〉profile 27
66. 〈xsm_〉readconsole 33.1
67. 〈xsm_〉remove_range 35.18, 35.19, 35.17
68. 〈xsm_〉resumedomain 35.5
69. 〈xsm_〉sched_id 33.3
70. 〈xsm_〉schedop_shutdown 30.5
71. 〈xsm_〉scheduler 35.11
72. 〈xsm_〉sendtrigger 35.37
73. 〈xsm_〉set_target 35.21
74. 〈xsm_〉setdebugging 35.16
75. 〈xsm_〉setdomainhandle 35.15
76. 〈xsm_〉setdomainmaxmem 35.14
77. 〈xsm_〉shadow_control 35.24
78. 〈xsm_〉tbufcontrol 33.2
79. 〈xsm_〉test_assign_device 35.39
80. 〈xsm_〉update_va_mapping 28.3, 28.4
81. 〈xsm_〉vcpuaffinity 35.9, 35.10
82. 〈xsm_〉vcpuextstate 35.49, 35.50
83. 〈xsm_〉xen_apic 34.10, 34.9
84. 〈xsm_〉xen_settime 32.1

Table G.2: Xsm hooks that were used for our access control.

134

Bibliography

[AL12] Alert Logic. An emperical analysis of real world threats. 2012. url:
http://www.alertlogic.com/resources/state- of- cloud-
security-report (visited on 11/2012).

[AMDV] AMD corporation. AMD Programmer’s manual, volume 2. url:
http://support.amd.com/us/Processor_TechDocs/24593_APM_
v2.pdf (visited on 11/2012).

[And01] Ross J. Anderson. Security Engineering: A Guide to Building De-
pendable Distributed Systems. 1st. New York, NY, USA: John Wiley
& Sons, Inc., 2001. isbn: 0471389226.

[Arm+10] M. Armbrust et al. “A view of cloud computing”. In: Communica-
tions of the ACM 53.4 (2010), pp. 50–58.

[Bar+03] P. Barham et al. “Xen and the art of virtualization”. In: ACM
SIGOPS Operating Systems Review. Vol. 37. 5. ACM. 2003, pp. 164–
177.

[Bel05] F. Bellard. “QEMU, a fast and portable dynamic translator”. In:
USENIX. 2005.

[Ber+06] Stefan Berger et al. “vTPM: Virtualizing the trusted platform
module”. In: In USENIX Security. 2006, pp. 305–320.

[Bis04] M. Bishop. Introduction to computer security. Addison-Wesley Pro-
fessional, 2004.

[But+12] Shakeel Butt et al. “Self-service cloud computing”. In: Proceedings of
the 2012 ACM conference on Computer and communications secu-
rity. CCS ’12. Raleigh, North Carolina, USA: ACM, 2012, pp. 253–
264. isbn: 978-1-4503-1651-4. doi: 10.1145/2382196.2382226.
url: http://doi.acm.org/10.1145/2382196.2382226.

[Can+04] G. Candea et al. “Microreboot–a technique for cheap recovery”.
In: Proceedings of the 6th conference on Symposium on Opearting
Systems Design & Implementation. Vol. 6. 2004.

135

http://www.alertlogic.com/resources/state-of-cloud-security-report
http://www.alertlogic.com/resources/state-of-cloud-security-report
http://support.amd.com/us/Processor_TechDocs/24593_APM_v2.pdf
http://support.amd.com/us/Processor_TechDocs/24593_APM_v2.pdf
http://dx.doi.org/10.1145/2382196.2382226
http://doi.acm.org/10.1145/2382196.2382226

Bibliography

[Cat+10] L. Catuogno et al. “Trusted Virtual Domains–design, implemen-
tation and lessons learned”. In: Trusted Systems (2010), pp. 156–
179.

[CC] Common Criteria. Portal. url: http://www.commoncriteriaportal.
org/cc (visited on 12/2012).

[Chi07] David Chisnall. The Definitive Guide to the Xen Hypervisor (Pren-
tice Hall Open Source Software Development Series). Upper Saddle
River, NJ, USA: Prentice Hall PTR, 2007. isbn: 013234971X.

[Col+11] Patrick Colp et al. “Breaking up is hard to do: security and func-
tionality in a commodity hypervisor”. In: Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles. SOSP ’11.
Cascais, Portugal: ACM, 2011, pp. 189–202. isbn: 978-1-4503-0977-6.
doi: 10.1145/2043556.2043575. url: http://doi.acm.org/10.
1145/2043556.2043575.

[CS] Apache foundation. Cloudstack. url: http://incubator.apache.
org/cloudstack (visited on 11/2012).

[CSA10] Cloud Security Alliance (CSA). Top threats to cloud computing,
version 1.0. Mar. 2010. url: http://www.cloudsecurityalliance.
org/topthreats/csathreats.v1.0.pdf (visited on 11/2012).

[Den+12] Mina Deng et al. “Towards Trustworthy Health Platform Cloud”.
In: Secure Data Management. Ed. by Willem Jonker and Milan
Petković. Vol. 7482. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2012, pp. 162–175. isbn: 978-3-642-32872-5. doi:
10.1007/978-3-642-32873-2_12. url: http://dx.doi.org/10.
1007/978-3-642-32873-2_12.

[Des+08] T. Deshane et al. “Quantitative comparison of Xen and KVM”. In:
Xen Summit, Boston, MA, USA (2008), pp. 1–2.

[DY83] D. Dolev and A. Yao. “On the security of public key protocols”. In:
Information Theory, IEEE Transactions on 29.2 (1983), pp. 198–
208.

[Fer06] N. Ferguson. “AES-CBC+ Elephant diffuser: A disk encryption
algorithm for Windows Vista”. In: Microsoft Corp (2006).

[FI] Various authors. Fio tool. url: http://freecode.com/projects/
fio (visited on 11/2012).

[Fru05] C. Fruhwirth. “New methods in hard disk encryption”. In: Insti-
tute for Computer Languages, Theory and Logic Group, Vienna
University of Technology (2005).

136

http://www.commoncriteriaportal.org/cc
http://www.commoncriteriaportal.org/cc
http://dx.doi.org/10.1145/2043556.2043575
http://doi.acm.org/10.1145/2043556.2043575
http://doi.acm.org/10.1145/2043556.2043575
http://incubator.apache.org/cloudstack
http://incubator.apache.org/cloudstack
http://www.cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
http://www.cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf
http://dx.doi.org/10.1007/978-3-642-32873-2_12
http://dx.doi.org/10.1007/978-3-642-32873-2_12
http://dx.doi.org/10.1007/978-3-642-32873-2_12
http://freecode.com/projects/fio
http://freecode.com/projects/fio

Bibliography

[Gen09] Craig Gentry. “Fully homomorphic encryption using ideal lattices”.
In: Proceedings of the 41st annual ACM symposium on Theory of
computing. STOC ’09. Bethesda, MD, USA: ACM, 2009, pp. 169–
178. isbn: 978-1-60558-506-2. doi: 10.1145/1536414.1536440.
url: http://dx.doi.org/10.1145/1536414.1536440.

[Gol73] R.P. Goldberg. Architectural principles for virtual computer systems.
Tech. rep. DTIC Document, 1973.

[GR] GNU. GRand Unified Bootloader. url: http://www.gnu.org/
software/grub (visited on 11/2012).

[GR03] T. Garfinkel and M. Rosenblum. “A virtual machine introspection
based architecture for intrusion detection”. In: Proc. Network and
Distributed Systems Security Symposium. 2003.

[Joh+] Jeff Johnston et al. Newlib. url: http://sourceware.org/newlib
(visited on 10/2012).

[Kau07] B. Kauer. “OSLO: Improving the security of Trusted Computing”.
In: Proceedings of 16th USENIX security symposium on usenix
security symposium. 2007, pp. 1–9.

[Kel+10] Eric Keller et al. “NoHype: virtualized cloud infrastructure without
the virtualization”. In: Proceedings of the 37th annual international
symposium on Computer architecture. ISCA ’10. Saint-Malo, France:
ACM, 2010, pp. 350–361. isbn: 978-1-4503-0053-7. doi: 10.1145/
1815961.1816010. url: http://doi.acm.org/10.1145/1815961.
1816010.

[Kiv+07] A. Kivity et al. “kvm: the Linux virtual machine monitor”. In:
Proceedings of the Linux Symposium. Vol. 1. 2007, pp. 225–230.

[Lie+95] J. Liedtke et al. “On-kernel construction”. In: Proceedings of the
15th ACM Symposium on OS Principles. 1995, pp. 237–250.

[Lie96] J. Liedtke. “Toward real microkernels”. In: Communications of the
ACM 39.9 (1996), pp. 70–77.

[Mc+08] J.M. McCune et al. “Flicker: An execution infrastructure for TCB
minimization”. In: SIGOPS Operating Systems Review 42.4 (2008),
pp. 315–328.

[Mer87] Ralph Merkle. “A Digital Signature Based on a Conventional En-
cryption Function”. In: Advances in Cryptology – CRYPTO ’87. Ed.
by Carl Pomerance. Vol. 293. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2006, pp. 369–378. isbn: 978-3-540-
18796-7.

137

http://dx.doi.org/10.1145/1536414.1536440
http://dx.doi.org/10.1145/1536414.1536440
http://www.gnu.org/software/grub
http://www.gnu.org/software/grub
http://sourceware.org/newlib
http://dx.doi.org/10.1145/1815961.1816010
http://dx.doi.org/10.1145/1815961.1816010
http://doi.acm.org/10.1145/1815961.1816010
http://doi.acm.org/10.1145/1815961.1816010

Bibliography

[MG11] P. Mell and T. Grance. “The NIST definition of cloud computing
(draft)”. In: NIST special publication 800 (2011), p. 145.

[MMH08] Derek Gordon Murray, Grzegorz Milos, and Steven Hand. “Im-
proving Xen security through disaggregation”. In: Proceedings of
the fourth ACM SIGPLAN/SIGOPS international conference on
Virtual execution environments. VEE ’08. Seattle, WA, USA: ACM,
2008, pp. 151–160. isbn: 978-1-59593-796-4. doi: 10.1145/1346256.
1346278. url: http://doi.acm.org/10.1145/1346256.1346278.

[NBH08] K. Nance, M. Bishop, and B. Hay. “Virtual Machine Introspection:
Observation or Interference?” In: Security Privacy, IEEE 6.5 (2008),
pp. 32 –37. issn: 1540-7993. doi: 10.1109/MSP.2008.134.

[OS] Openstack. Openstack. url: http://www.openstack.org (visited
on 10/2012).

[PG74] G.J. Popek and R.P. Goldberg. “Formal requirements for virtual-
izable third generation architectures”. In: Communications of the
ACM 17.7 (1974), pp. 412–421.

[RC11] F. Rocha and M. Correia. “Lucy in the sky without diamonds:
Stealing confidential data in the cloud”. In: Dependable Systems and
Networks Workshops (DSN-W), 2011 IEEE/IFIP 41st International
Conference on. IEEE. 2011, pp. 129–134.

[Ris+09] Thomas Ristenpart et al. “Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds”. In: Proceedings
of the 16th ACM conference on Computer and communications
security. CCS ’09. Chicago, Illinois, USA: ACM, 2009, pp. 199–212.
isbn: 978-1-60558-894-0. doi: 10.1145/1653662.1653687. url:
http://doi.acm.org/10.1145/1653662.1653687.

[Sad+07] A.R. Sadeghi et al. “Enabling fairer digital rights management with
trusted computing”. In: Information Security (2007), pp. 53–70.

[Sad11] Ahmad-Reza Sadeghi. Trusted Computing lecture slides. 2011. url:
http://www.trust.informatik.tu-darmstadt.de/fileadmin/
user_upload/Group_TRUST/LectureSlides/ESS-SS2011/Chap3_-
_TCG_Concepts.pdf (visited on 12/2012).

[Sai+05] R. Sailer et al. “Building a MAC-based security architecture for the
Xen open-source hypervisor”. In: Computer Security Applications
Conference, 21st Annual. IEEE. 2005, 10–pp.

138

http://dx.doi.org/10.1145/1346256.1346278
http://dx.doi.org/10.1145/1346256.1346278
http://doi.acm.org/10.1145/1346256.1346278
http://dx.doi.org/10.1109/MSP.2008.134
http://www.openstack.org
http://dx.doi.org/10.1145/1653662.1653687
http://doi.acm.org/10.1145/1653662.1653687
http://www.trust.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_TRUST/LectureSlides/ESS-SS2011/Chap3_-_TCG_Concepts.pdf
http://www.trust.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_TRUST/LectureSlides/ESS-SS2011/Chap3_-_TCG_Concepts.pdf
http://www.trust.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_TRUST/LectureSlides/ESS-SS2011/Chap3_-_TCG_Concepts.pdf

Bibliography

[Sar+06] L.F.G. Sarmenta et al. “Virtual monotonic counters and count-
limited objects using a TPM without a trusted OS”. In: Proceedings
of the first ACM workshop on Scalable trusted computing. ACM.
2006, pp. 27–42.

[Sau] C. Sauot. dm-crypt: A device-mapper crypto target. url: http:
//www.saout.de/misc/dm-crypt (visited on 10/2012).

[Sch+10] Joshua Schiffman et al. “Seeding clouds with trust anchors”. In:
Proceedings of the 2010 ACM workshop on Cloud computing security
workshop. CCSW ’10. Chicago, Illinois, USA: ACM, 2010, pp. 43–
46. isbn: 978-1-4503-0089-6. doi: 10.1145/1866835.1866843. url:
http://doi.acm.org/10.1145/1866835.1866843.

[SGR09] Nuno Santos, Krishna P. Gummadi, and Rodrigo Rodrigues. “To-
wards trusted cloud computing”. In: Proceedings of the 2009 con-
ference on Hot topics in cloud computing. HotCloud’09. San Diego,
California: USENIX Association, 2009. url: http://dl.acm.org/
citation.cfm?id=1855533.1855536.

[SK10] U. Steinberg and B. Kauer. “NOVA: A microhypervisor-based secure
virtualization architecture”. In: Proceedings of the 5th European
conference on Computer systems. ACM. 2010, pp. 209–222.

[SL] D.A. Wheeler. SLOCCount. url: http://www.dwheeler.com/
sloccount (visited on 12/2012).

[SS04] A.R. Sadeghi and C. Stüble. “Property-based attestation for com-
puting platforms: caring about properties, not mechanisms”. In:
Proceedings of the 2004 workshop on New security paradigms. ACM.
2004, pp. 67–77.

[SSB07] P. Sevinç, M. Strasser, and D. Basin. “Securing the distribution and
storage of secrets with trusted platform modules”. In: Information
Security Theory and Practices. Smart Cards, Mobile and Ubiquitous
Computing Systems (2007), pp. 53–66.

[SSW08] Ahmad-Reza Sadeghi, Christian Stüble, and Marcel Winandy. “Pro-
perty-Based TPM Virtualization”. In: Information Security. Ed. by
Tzong-Chen Wu et al. Vol. 5222. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2008, pp. 1–16. isbn: 978-3-540-85884-
3. url: http://dx.doi.org/10.1007/978-3-540-85886-7_1.

[Sta06] William Stallings. Cryptography and Network Security. 4th. Pearson
Education India, 2006.

139

http://www.saout.de/misc/dm-crypt
http://www.saout.de/misc/dm-crypt
http://dx.doi.org/10.1145/1866835.1866843
http://doi.acm.org/10.1145/1866835.1866843
http://dl.acm.org/citation.cfm?id=1855533.1855536
http://dl.acm.org/citation.cfm?id=1855533.1855536
http://www.dwheeler.com/sloccount
http://www.dwheeler.com/sloccount
http://dx.doi.org/10.1007/978-3-540-85886-7_1

Bibliography

[TB] Intel corporation. TBoot on SourceForge. url: http://sourceforge.
net/projects/tboot (visited on 11/2012).

[TC] TrueCrypt Developers Association et al. TrueCrypt-Free open-source
disk encryption software for Windows 7/Vista/XP, Mac OS X, and
Linux. url: http://www.truecrypt.org (visited on 10/2012).

[TCG] Trusted Computing Group. About and members. url: http://www.
trustedcomputinggroup.org/about_tcg/tcg_members (visited
on 06/2012).

[TCG03] Trusted Computing Group. TPM main specification. 2003. url:
http://www.trustedcomputinggroup.org/developers/trusted_
platform_module (visited on 06/2012).

[TCGb] Trusted Computing Group. How to make your system and data
truly secure. url: http://www.trustedcomputinggroup.org/
resources/trusted_computing_how_to_make_your_systems_
and_data_truly_secure (visited on 11/2012).

[TD08] S. Thibault and T. Deegan. “Improving performance by embedding
HPC applications in lightweight Xen domains”. In: Proceedings of
the 2nd workshop on System-level virtualization for high performance
computing. ACM. 2008, pp. 9–15.

[TG] Sirrix AG and Ruhr-University Bochum. Trusted GRUB. url: http:
//projects.sirrix.com/trac/trustedgrub (visited on 12/2012).

[TR] TrouSerS developers. TrouSerS – The open-source TCG Software
Stack. url: http : / / trousers . sourceforge . net (visited on
11/2012).

[TXT] Intel corporation. Intel Trusted Execution Technology. url: http:
/ / download . intel . com / technology / security / downloads /
315168.pdf (visited on 11/2012).

[Vaq+08] L.M. Vaquero et al. “A break in the clouds: towards a cloud defini-
tion”. In: ACM SIGCOMM Computer Communication Review 39.1
(2008), pp. 50–55.

[VB] Oracle corporation. Oracle VM Virtualbox. url: http : / / www .
virtualbox.org (visited on 11/2012).

[VDJ10] M. Van Dijk and A. Juels. “On the impossibility of cryptography
alone for privacy-preserving cloud computing”. In: Proceedings of
the 5th USENIX conference on Hot topics in security. USENIX
Association. 2010, pp. 1–8.

140

http://sourceforge.net/projects/tboot
http://sourceforge.net/projects/tboot
http://www.truecrypt.org
http://www.trustedcomputinggroup.org/about_tcg/tcg_members
http://www.trustedcomputinggroup.org/about_tcg/tcg_members
http://www.trustedcomputinggroup.org/developers/trusted_platform_module
http://www.trustedcomputinggroup.org/developers/trusted_platform_module
http://www.trustedcomputinggroup.org/resources/trusted_computing_how_to_make_your_systems_and_data_truly_secure
http://www.trustedcomputinggroup.org/resources/trusted_computing_how_to_make_your_systems_and_data_truly_secure
http://www.trustedcomputinggroup.org/resources/trusted_computing_how_to_make_your_systems_and_data_truly_secure
http://projects.sirrix.com/trac/trustedgrub
http://projects.sirrix.com/trac/trustedgrub
http://trousers.sourceforge.net
http://download.intel.com/technology/security/downloads/315168.pdf
http://download.intel.com/technology/security/downloads/315168.pdf
http://download.intel.com/technology/security/downloads/315168.pdf
http://www.virtualbox.org
http://www.virtualbox.org

Bibliography

[VM] VMware corporation. VMware ESX Server, VMWare Player. url:
http://www.vmware.com/ (visited on 11/2012).

[VV09] A. Velte and T. Velte.Microsoft virtualization with Hyper-V. McGraw-
Hill, Inc., 2009.

[VZ09] J. Voas and J. Zhang. “Cloud Computing: new wine or just a new
bottle?” In: IT professional 11.2 (2009), pp. 15–17.

[WD] Western Digital corporation. WD Caviar SE16 family. url: http://
www.direktronik.se/pdfer/i28-0314.pdf (visited on 12/2012).

[WJW12] D. Williams, H. Jamjoom, and H. Weatherspoon. “The Xen-Blanket:
virtualize once, run everywhere”. In: ACM EuroSys (2012).

[XML1] Xen mailing list. New domain builder in xen-unstable. url: http:
/ / lists . xen . org / archives / html / xen - ia64 - devel / 2007 -
01/msg00249.html (visited on 11/2012).

[XSA15] Xen developers et al. Xen security advisory 15. url: http://lists.
xen.org/archives/html/xen- announce/2012- 09/msg00006.
html (visited on 10/2012).

[XSA16] Xen developers et al. Xen security advisory 16. url: http://lists.
xen.org/archives/html/xen- announce/2012- 09/msg00005.
html (visited on 10/2012).

[YSK09] A. Yun, C. Shi, and Y. Kim. “On protecting integrity and confi-
dentiality of cryptographic file system for outsourced storage”. In:
Proceedings of the 2009 ACM workshop on Cloud computing security.
ACM. 2009, pp. 67–76.

[Zha+11a] Fengzhe Zhang et al. “CloudVisor: retrofitting protection of vir-
tual machines in multi-tenant cloud with nested virtualization”. In:
Proceedings of the Twenty-Third ACM Symposium on Operating Sys-
tems Principles. SOSP ’11. Cascais, Portugal: ACM, 2011, pp. 203–
216. isbn: 978-1-4503-0977-6. doi: 10.1145/2043556.2043576.
url: http://doi.acm.org/10.1145/2043556.2043576.

[Zha+11b] Y. Zhang et al. “Homealone: Co-residency detection in the cloud via
side-channel analysis”. In: Security and Privacy (SP), 2011 IEEE
Symposium on. IEEE. 2011, pp. 313–328.

141

http://www.vmware.com/
http://www.direktronik.se/pdfer/i28-0314.pdf
http://www.direktronik.se/pdfer/i28-0314.pdf
http://lists.xen.org/archives/html/xen-ia64-devel/2007-01/msg00249.html
http://lists.xen.org/archives/html/xen-ia64-devel/2007-01/msg00249.html
http://lists.xen.org/archives/html/xen-ia64-devel/2007-01/msg00249.html
http://lists.xen.org/archives/html/xen-announce/2012-09/msg00006.html
http://lists.xen.org/archives/html/xen-announce/2012-09/msg00006.html
http://lists.xen.org/archives/html/xen-announce/2012-09/msg00006.html
http://lists.xen.org/archives/html/xen-announce/2012-09/msg00005.html
http://lists.xen.org/archives/html/xen-announce/2012-09/msg00005.html
http://lists.xen.org/archives/html/xen-announce/2012-09/msg00005.html
http://dx.doi.org/10.1145/2043556.2043576
http://doi.acm.org/10.1145/2043556.2043576

Bibliography

[Zha+12] Yinqian Zhang et al. “Cross-VM side channels and their use to
extract private keys”. In: Proceedings of the 2012 ACM conference
on Computer and communications security. CCS ’12. Raleigh, North
Carolina, USA: ACM, 2012, pp. 305–316. isbn: 978-1-4503-1651-4.
doi: 10.1145/2382196.2382230. url: http://doi.acm.org/10.
1145/2382196.2382230.

142

http://dx.doi.org/10.1145/2382196.2382230
http://doi.acm.org/10.1145/2382196.2382230
http://doi.acm.org/10.1145/2382196.2382230

Acronyms

A

ACM access control module.
AES Advanced Encryption Standard.
AIK attestation identity key.
AMD-V amd virtualization.
API application programming inter-
face.
AWS Amazon web services.

B

BIOS basic input output interface.

C

CA certificate authority.
CaaS cryptography as a service.
CBC cipher-block chaining.
CIA confidentiality, integrity and
availability.
CPU central processing unit.
CRTM core root of trust for measure-
ments.
CSINFO caas-info.
CSP cloud service provider.
CV cloud verifier.

D

DAA direct anonymous attestation.
DMA direct memory access.
Dom0 domain zero.
DomB the builder domain.

DomC crypto domain.
DomT trusted domainbuilder domain.
DomU domain unprivileged.
DRTM dynamic root of trust for mea-
surements.

E

EC2 Amazon Elastic Compute Cloud.
EK endorsement key.
EOI end of interrupt.
ESSIV encrypted salt-sector initializa-
tion vector.
EVM encrypted virtual machine.

F

FDE full disk encryption.
FHE fully homomorphic encryption.

G

GPFN guest page frame number.
GRUB gnu grand unified bootloader.

H

HMAC hash-based message authenti-
cation code.
HSM hardware security module.
HVK high value key.
HVM hardware virtual machine.
HW hardware.

I

IaaS infrastructure as a service.

143

Acronyms

IOAPIC i/o advanced programmable
interrupt controller.
IOMMU input/ouput memory man-
agement unit.
IPSec internet protocol security.
IRET interrupt return.
IRQ interrupt request.
IV initialization vector.
IVMC inter-vm communication.

K

KLoC kilo lines of code.
KVM Kernel-based Virtual Machine.

L

LCP launch control policy.
LOC lines of code.

M

M2P machine to physical.
MAC message authentication code.
MBR master boot record.
MFN machine frame number.
MLE measured launch environment.
MMIO memory mapped input/out-
put.
MMU memory management unit.
MTRR memory type range register.

N

NC node controller.
NDA non-disclosure agreement.
NIC network interface card.
NIST National Institute of Standards
and Technology.
NOVA nova os virtualization archi-
tecture.
NPK node public key.

O

OIAP object-independent authoriza-
tion protocol.
OS operating system.
OSAP object-specific authorization
protocol.

P

PaaS platform as a service.
PC personal computer.
PCI peripheral controller Interface.
PCR platform configuration register.
PHR personal health record.
PoD populate-on-demand.
POSIX portable operating system in-
terface.
PV paravirtualized.
PVOps paravirtual operations.

R

RAM random access memory.
RNG random number generator.
RPC remote procedure call.
RSA Rivest Shamir Adleman.

S

SaaS software as a service.
SHA-1 secure hash algorithm #1.
SMP symmetric multiprocessor archi-
tectures.
SRK storage root key.
SRTM static root of trust for mea-
surements.
SSC self-service cloud.

T

TBoot Trusted Boot.
TC trusted computing.
TCB trusted computing base.

144

Acronyms

TCG Trusted Computing Group.
TLB translation lookaside buffer.
TOCTOU time of check, time of use.
TPM trusted platform module.
TPM-NV tpm non-volatile memory.
TS task switch.
TSC time stamp counter.
TSPI tss service provider interface.
TSS tcg software stack.
TTP trusted third party.
TVD trusted virtual domain.
TXT trusted execution technology.

U

UUID universally unique identifier.

V

VCPU virtual cpu.
VFS virtual filesystem.
VL verified launch.
VM virtual machine.
VMCB virtual machine control blob.
VMM virtual machine monitor.
vTPM virtual tpm.
vTPM-NV virtual tpm non-volatile
memory.

X

XSM Xen security module.

145

Index of symbols and identifiers

This index is sorted on the name of the identifier without the leading prefix.

A
〈xsm_〉acpi_sleep, 134
XENPF_add_memtype, 127
〈xsm_〉add_range, 134
XENMEM_add_to_physmap, 126
〈xsm_〉add_to_physmap, 134
〈xsm_〉address_size, 134
PHYSDEVOP_alloc_irq_vector, 129
〈xsm_〉alloc_security_evtchn, 134
EVTCHNOP_alloc_unbound, 127
PHYSDEVOP_apic_read, 129
PHYSDEVOP_apic_write, 129
DOMCTL_assign_device, 131
〈xsm_〉assign_device, 134
〈xsm_〉assign_vector, 134
SYSTCL_availheap, 128
〈xsm_〉availheap, 134

B
EVTCHNOP_bind_interdomain, 127
EVTCHNOP_bind_ipi, 127
EVTCHNOP_bind_pirq, 127
DOMCTL_bind_pt_irq, 131
〈xsm_〉bind_pt_irq, 134
EVTCHNOP_bind_vcpu, 127
EVTCHNOP_bind_virq, 127
SCHEDOP_block, 127

C
HYPERVISOR_callback_op, 125

〈TPM_〉CertifyKey, 52
〈TPM_〉CertifyKey, 35
XENPF_change_freq, 128
〈xsm_〉change_freq, 134
EVTCHNOP_close, 127
close, 100
HYPERVISOR_console_io, 124
〈xsm_〉console_io, 133
GNTTABOP_copy, 126
XENPF_cpu_hotadd, 128
XENPF_cpu_offline, 128
XENPF_cpu_online, 128
SYSTCL_cpupool_op, 128
DOMCTL_createdomain, 129
〈TPM_〉CreateWrapKey, 52
〈TPM_〉CreateWrapKey, 21
XENMEM_current_reservation, 125

D
〈Tspi_〉Data_Bind, 95
DOMCTL_deassign_device, 131
SYSTCL_debug_keys, 128
〈xsm_〉debug_keys, 134
DOMCTL_debug_op, 132
XENMEM_decrease_reservation, 125
XENPF_del_memtype, 127
DOMCTL_destroydomain, 129
〈xsm_〉destroydomain, 133
DOMCTL_disable_migrate, 130
do_domain_create, 102

146

Index of symbols and identifiers

〈xsm_〉domain_create, 134
〈libxl_〉domain_create_new, 102
〈libxl_〉domain_create_restore, 102
〈xsm_〉domain_memory_map, 134
〈xsm_〉domain_settime, 134
HYPERVISOR_domctl_op, 129

E
XENPF_enter_acpi_sleep, 128
PHYSDEVOP_eoi, 129
〈xsm_〉evtchn_close_post, 133
〈xsm_〉evtchn_interdomain, 133
HYPERVISOR_evtchn_op, 127
〈xsm_〉evtchn_reset, 134
〈xsm_〉evtchn_send, 133
〈xsm_〉evtchn_status, 134
〈xsm_〉evtchn_unbound, 134
XENMEM_exchange, 125
〈xsm_〉ext_vcpucontext, 134
〈TPM_〉Extend, 34
〈TPM_〉Extend, 21, 33, 34

F
XENPF_firmware_info, 128
〈xsm_〉firmware_info, 134
HYPERVISOR_fpu_taskswitch, 124
PHYSDEVOP_free_irq_vector, 129

G
DOMCTL_gdbsx_domstatus, 132
DOMCTL_gdbsx_guestmemio, 132
DOMCTL_gdbsx_pausevcpu, 132
DOMCTL_gdbsx_unpausevcpu, 132
DOMCTL_get_address_size, 131
XENPF_get_cpuinfo, 128
HYPERVISOR_get_debugreg, 124
DOMCTL_get_device_group, 131
DOMCTL_get_ext_vcpucontext, 131

DOMCTL_get_machine_address_size,
131

SYSTCL_get_pmstat, 128
〈xsm_〉get_pmstat, 134
XENMEM_get_pod_target, 126
XENMEM_get_sharing_freed_pages, 126
GNTTABOP_get_status_frames, 126
GNTTABOP_get_version, 126
SYSTCL_getcpuinfo, 128
〈xsm_〉getcpuinfo, 134
DOMCTL_getdomaininfo, 130
〈xsm_〉getdomaininfo, 134
SYSTCL_getdomaininfolist, 128
DOMCTL_gethvmcontext, 131
DOMCTL_gethvmcontext_partial, 131
XENPF_getidletime, 128
〈xsm_〉getidletime, 134
DOMCTL_getmemlist, 130
〈xsm_〉getmemlist, 134
DOMCTL_getpageframeinfo, 130
〈xsm_〉getpageframeinfo, 134
DOMCTL_getpageframeinfo2, 130
DOMCTL_getpageframeinfo3, 130
DOMCTL_gettscinfo, 132
DOMCTL_getvcpuaffinity, 130
DOMCTL_getvcpucontext, 129
〈xsm_〉getvcpucontext, 133
DOMCTL_getvcpuextstate, 131
DOMCTL_getvcpuinfo, 130
〈xsm_〉getvcpuinfo, 134
〈xsm_〉grant_copy, 133
〈xsm_〉grant_map_ref, 133
〈xsm_〉grant_map_unref, 133
〈xsm_〉grant_query_size, 134
〈xsm_〉grant_setup, 134
HYPERVISOR_grant_table_op, 126
〈xsm_〉grant_transfer, 133

147

Index of symbols and identifiers

H
HYPERVISOR_hvm_op, 125
〈xsm_〉hvm_param, 133
〈xsm_〉hvm_set_isa_irq_level, 133
〈xsm_〉hvm_set_pci_intx_level, 133
〈xsm_〉hvm_set_pci_link_route, 133
〈xsm_〉hvmcontext, 134
DOMCTL_hypercall_init, 130
〈xsm_〉hypercall_init, 134

I
XENMEM_increase_reservation, 125
〈TPM_〉IncrementCounter, 23
DOMCTL_iomem_permission, 130
DOMCTL_ioport_mapping, 131
DOMCTL_ioport_permission, 130
HYPERVISOR_iret, 125
DOMCTL_irq_permission, 130
PHYSDEVOP_irq_status_query, 129

K
kexec, 125
〈xsm_〉kexec, 134
HYPERVISOR_kexec_op, 125

L
〈xc_〉linux_build, 103
〈TPM_〉LoadKey2, 52, 95
〈TPM_〉LoadKey2, 21
SYSTCL_lockprof_op, 128
lseek, 100

M
〈xsm_〉machine_address_size, 134
XENMEM_machine_memory_map, 126
〈xsm_〉machine_memory_map, 133
XENMEM_machphys_mapping, 126
XENMEM_machphys_mfn_list, 125

majorminor, 100
PHYSDEVOP_manage_pci_add, 129
PHYSDEVOP_manage_pci_add_ext, 129
PHYSDEVOP_manage_pci_remove, 129
GNTTABOP_map_grant_ref, 126
PHYSDEVOP_map_pirq, 129
DOMCTL_max_mem, 130
DOMCTL_max_vcpus, 129
〈xsm_〉max_vcpus, 134
XENMEM_maximum_gpfn, 126
XENMEM_maximum_ram_page, 125
XENMEM_maximum_reservation, 125
DOMCTL_mem_event_op, 132
XENPF_mem_hotadd, 128
DOMCTL_mem_sharing_op, 132
〈xsm_〉memory_adjust_reservation, 134
XENMEM_memory_map, 126
DOMCTL_memory_mapping, 131
HYPERVISOR_memory_op, 125
〈xsm_〉memory_pin_page, 133
〈xsm_〉memory_stat_reservation, 134
〈xsm_〉memtype, 134
〈xsm_〉microcode, 134
XENPF_microcode_update, 127
〈xsm_〉mm_machphys_update, 134
〈xsm_〉mm_normal_update, 134
mmap, 100
HYPERVISOR_mmu_update, 124
HYPERVISOR_mmuext_op, 125
HYPERVISOR_multicall, 124

N
HYPERVISOR_nmi_op, 125
SYSCTL_numainfo, 129

O
open, 100

148

Index of symbols and identifiers

P
SYSTCL_page_offline_op, 128
DOMCTL_pausedomain, 129
〈xsm_〉pausedomain, 133
〈TPM_〉PCRRead, 34, 52
PCRRead, 34
SYSTCL_perfc_op, 128
〈xsm_〉perfcontrol, 134
HYPERVISOR_physdev_op, 129
SYSCTL_physinfo, 128
〈xsm_〉physinfo, 134
DOMCTL_pin_mem_cacheattr, 131
〈xsm_〉pin_mem_cacheattr, 134
PHYSDEVOP_pirq_eoi_gmfn, 129
HYPERVISOR_platform_op, 127
XENPF_platform_quirk, 127
〈xsm_〉platform_quirk, 134
SYSTCL_pm_op, 128
〈xsm_〉pm_op, 134
SCHEDOP_poll, 127
XENMEM_populate_physmap, 125
〈xsm_〉profile, 134

Q
GNTTABOP_query_size, 126
〈TPM_〉Quote, 21, 35

R
read, 100
XENPF_read_memtype, 127
SYSTCL_readconsole, 128
〈xsm_〉readconsole, 134
〈TPM_〉ReadCounter, 23
〈TPM_〉ReadPubEK, 52
SCHEDOP_remote_shutdown, 127
〈xsm_〉remove_range, 134
EVTCHNOP_reset, 127
PHYSDEVOP_restore_msi, 129
DOMCTL_resumedomain, 129

〈xsm_〉resumedomain, 134

S
SYSTCL_sched_id, 128
〈xsm_〉sched_id, 134
HYPERVISOR_sched_op, 126
〈xsm_〉schedop_shutdown, 134
〈xsm_〉scheduler, 134
DOMCTL_scheduler_op, 130
SYSTCL_scheduler_op, 128
〈TPM_〉Seal, 22
EVTCHNOP_send, 127
DOMCTL_sendtrigger, 131
〈xsm_〉sendtrigger, 134
SENTER, 117, 118
DOMCTL_set_access_required, 132
DOMCTL_set_address_size, 131
HYPERVISOR_set_callbacks, 124
DOMCTL_set_cpuid, 131
HYPERVISOR_set_debugreg, 124
DOMCTL_set_ext_vcpucontext, 131
HYPERVISOR_set_gdt, 124
PHYSDEVOP_set_iobitmap, 129
PHYSDEVOP_set_iopl, 129
DOMCTL_set_machine_address_size,

131
XENMEM_set_memory_map, 126
XENMEM_set_pod_target, 126
XENPF_set_processor_pminfo, 128
HYPERVISOR_set_segment_base, 125
DOMCTL_set_target, 130
〈xsm_〉set_target, 134
HYPERVISOR_set_timer_op, 124
HYPERVISOR_set_trap_table, 124
GNTTABOP_set_version, 126
DOMCTL_setdebugging, 130
〈xsm_〉setdebugging, 134
DOMCTL_setdomainhandle, 130
〈xsm_〉setdomainhandle, 134

149

Index of symbols and identifiers

〈xsm_〉setdomainmaxmem, 134
DOMCTL_sethvmcontext, 130
XENPF_settime, 127
DOMCTL_settimeoffset, 130
DOMCTL_settscinfo, 132
PHYSDEVOP_setup_gsi, 129
GNTTABOP_setup_table, 126
DOMCTL_setvcpuaffinity, 129
DOMCTL_setvcpucontext, 129
〈xsm_〉setvcpucontext, 133
DOMCTL_setvcpuextstate, 131
SHA1, 21
〈xsm_〉shadow_control, 134
DOMCTL_shadow_op, 130
SCHEDOP_shutdown, 127
SCHEDOP_shutdown_code, 127
HYPERVISOR_stack_switch, 124
stat, 100
EVTCHNOP_status, 127
DOMCTL_subscribe, 130
DOMCTL_

suppress_spurious_page_faults,
132

HYPERVISOR_sysctl_op, 128

T
SYSTCL_tbuf_op, 128
〈xsm_〉tbufcontrol, 134
DOMCTL_test_assign_device, 131
〈xsm_〉test_assign_device, 134
HYPERVISOR_tmem_op, 125
SYSCTL_topologyinfo, 129
GNTTABOP_transfer, 126

U
〈TPM_〉Unbind, 66, 95
〈TPM_〉Unbind, 21

DOMCTL_unbind_pt_irq, 131
GNTTABOP_unmap_and_replace, 126
GNTTABOP_unmap_grant_ref, 126
PHYSDEVOP_unmap_pirq, 129
EVTCHNOP_unmask, 127
DOMCTL_unpausedomain, 129
〈xsm_〉unpausedomain, 133
〈TPM_〉Unseal, 64
〈TPM_〉Unseal, 35
HYPERVISOR_update_descriptor, 124
HYPERVISOR_update_va_mapping, 124
〈xsm_〉update_va_mapping, 134
HYPERVISOR_

update_va_mapping_otherdomain,
124

V
HYPERVISOR_vcpu_op, 125
〈xsm_〉vcpuaffinity, 134
〈xsm_〉vcpuextstate, 134
HYPERVISOR_vm_assist, 124

W
SCHEDOP_watchdog, 127
write, 100, 101

X
〈xsm_〉xen_apic, 134
〈xsm_〉xen_settime, 134
HYPERVISOR_xen_version, 124
HYPERVISOR_xenoprof_op, 125
HYPERVISOR_xsm_op, 125
〈xsm_〉xsm_op, 133

Y
SCHEDOP_yield, 127

150

Index of concepts

A
Accelerated system call, 9
Amazon

Elastic Compute Cloud, 43
Amd-v, 7
Amd-svm, 20
Attestation, 21

B
Binary rewriting, see Dynamic

rewriting
Binding operation, 21

C
Certified binding key, 22
Cloud administrator, see Malicious

insider
Cloud Computing

Definition, 1
Core root of trust for

measurements, 19

D
Deployer tool, 115
Dm-crypt, 110
Dom0, see Management Domain
Domain builder, 66
Domain building, 14
Dynamic rewriting, 7
Dynamic root of trust for

measurements, 20

E
Ec2, see Amazon
Endorsement key (ek), 19
Event channel, 13, 14
Extend operation, 20

F
Full disk encryption, see

Passthrough encryption

G
Grant table, 11, 14
Grub, 87

H
Hardware assisted virtualization, 7,

10, 43
Hvm, see Hardware assisted

virtualization

I
Infrastructure as a service (iaas), 4
Inter-vm communication (ivmc),

104
Introspection, 15

K
Kernel mode, 8

L
libxc, 86

151

Index of concepts

Libxl, 15, 84
Localities, 22

M
Machine space, 9
Malicious insider, 28
Management domain, 5, 11
Merkle tree, 93
Microhypervisor, 38
microhypervisor, 44
Microkernel, 38
Mini-os, 15, 87
Monolithic kernel, 38
Monotonic counter, 22

P
Paravirtualization, 7, 43
Passthrough encryption, 67
Physical space, 9
Platform as a service (paas), 4
Privilege ring, see Protection ring
Property-based vtpm, 33
Protection ring, 8
Pv-grub, 87

Q
Qemu, 10

R
Ring buffer, 13, 112
Root of trust, 19

S
Sealing operation, 22
Shadow paging, 10
sHype, see Xen security module
Software as a service (saas), 4
Split driver, 14
Static root of trust for

measurements, 19

T
Tboot, 20
Trusted computing base, 17
Thesis

Adversaries, 28
Attack channels, 25
Attacker model, 25
Goal, 2
Objective, 29
Outline, 3
Requirements, 29, 30
Typesetting, 3

Trusted platform module (tpm), 17
Trust, 17
Trusted Platform Module

Authentication data, 24
Txt, 20
Type-i hypervisor, 5
Type-ii hypervisor, 5

U
User mode, 8

V
Virtual space, 9
Virtualization, 4
Virtualization extensions, see

Hardware assisted
virtualization

Vt-x, 7
Vtpm, 31

X
Xen, 10
Xend, 84
Xenkicker, 107
Xenstore, 13
xl, 15, 84
xm, 84
Xen security module (xsm), 96

152

	Abstract
	Acknowledgements
	Introduction
	Background information
	Introduction to virtualization
	Virtualization technologies
	Virtualization techniques
	Memory virtualization

	Introduction to the Xen hypervisor
	Virtual devices
	Tools
	Xen security

	Introduction to trusted computing
	Core concepts
	Operations

	Problem description
	Attacker model
	Attack channels
	Assumptions
	Adversaries

	Requirements
	Security objectives
	List of requirements

	Related work
	Virtualizing the TPM
	Property-based TPM virtualization
	Disaggregating Dom0
	The Xoar design
	The NOVA microhypervisor
	Cloud trust anchors
	The Cloudvisor design
	Self-service cloud computing

	Architecture
	Introduction
	Design
	Cryptographic assistance domain
	Hypervisor access control
	Trusted domain builder

	Key provisioning
	The basic scheme
	The cloud verifier scheme

	Implementation
	Components
	CaaS bootstrapping
	Initialization
	Starting a VM

	Evaluations
	Magnitude of the TCB
	Access control
	Passthrough encryption
	Discussion of results
	Measurement conclusions

	Experiments in the public cloud

	Future work
	Conclusions
	Further introduction to Xen
	Xen components
	Mini-OS

	Implementation details
	Overview
	Data structures
	Deprivileged management domain
	The XSM framework
	The CaaS security module

	Virtual filesystem driver
	The CaaS VFS bridge

	Domain builder port
	The CaaS domain builder
	Inter-VM pipe

	Direct booting of DomT in conjunction with Dom0
	TBoot
	Direct booting of DomT

	TPM driver
	Passthrough encryption
	Cryptography
	DomC back-end driver
	Applying passthrough encryption

	vTPMs and PV-TGRUB
	Services
	User VM deployment tool

	Details on the use of TBoot
	Xenstore device handshaking
	Xenstore security
	Xen hypercalls
	XSM hooks
	Bibliography
	Acronyms
	Index of symbols and identifiers
	Index of concepts

